CYCLOSILICATES

CLASS V CYCLOSILICATES

GROUP A MONOCYCLOSILICATES (UNBRANCHED SINGLE RINGS ($P^rSi_pO_{3p}$)^{-2p}, where $p = p^r$, number of tetrahedra within one ring (ring periodicity).

TYPE A THREE MEMBERED SINGLE RING TETRAHEDRA STRUCTURES (Si₃O₉) WITHOUT INSULAR COMPLEX ANIONS.

SERIES A BENITOITE SERIES, hex/P₆c2. Structure consists of Si₃O₉ rings with 3-fold rotation symmetry and a mirror plane // to it; these rings are situated in planes 000 $\frac{1}{4}$ and 000 $\frac{3}{4}$ with 36° rotation of alternating rings along [0001]; 2 x 3 rings are linked into a 3-dimensional framework by O-sharing M octahedra and Ba polyhedra, both also on the <u>6</u> axis, but at c = 0 and $\frac{1}{2}$.

VAAAA	BENITOITE	BaTi[Si ₃ O ₉]
VAAAB	BAZIRITE	BaZr[Si ₃ O ₉]
VAAAC	PABSTITE	Ba(Sn,Ti)[Si ₃ O ₉]
VAAAD	BOBTRAILLITE	(Na,Ca) ₁₃ Sr ₁₁ (Zr,Y,Nb) ₁₄ [Si ₂ BO ₇ (OH) ₂] ₆ [Si ₃ O ₉] ₁₀ ⁻ 12H ₂ O P <u>3</u> c1
VAAAE	ROGERMITCHELLITE	$Na_{12}(Sr,Na)_{24}Ba_{4}Zr_{26}[Si_{2}BO_{7}(OH)_{2}]_{12}[Si_{3}O_{9}]_{18}^{-1}8H_{2}O P\underline{3}c1$

SERIES B CATAPLEIITE SERIES, mon. The structure is close to benitoite. The cavities in the framework are occupied by NaO₆(H₂O)₂. The structure of calciumcatapleiite is characterized by a mixed framework of regular ZrO₆ octahedra and three-membered silicate rings, very similar to the framework of catapleiite. The water molecules also are similarly placed in the two minerals. Hilairite structure consists of spiral 6-periodic chains along [0001] with screw symmetry 3₁ or 3₂. Zr octahedra connect three chains by sharing O atoms; Na and zeolitic water are accommodated in the resulting channels.

VAABA	CATAPLEIITE	Na ₂ Zr[Si ₃ O ₉].2H ₂ O	B2/b
VAABB	CALCIUMCATAPLEIITE	CaZr[Si ₃ O ₉].2H ₂ O	Pbnn
VAABC	WADEITE	K ₂ Zr[Si ₃ O ₉]	P <u>6</u> orP6₃/m
VAABD	HILAIRITE	Na ₂ Zr[Si ₃ O ₉] [·] 3H ₂ O	R32
VAABE	CALCIOHILAIRITE	CaZr[Si ₃ O ₉] [·] 3H ₂ O	R32
VAABF	SAZYKINAITE-(Y)	Na ₅ YZr[Si ₃ O ₉] ₂ ·6H ₂ O	R32
VAABG	PYATENKOITE-(Y)	Na ₅ (Y,Dy,Gd)[TiSi ₃ O ₉] ₂ . 6H ₂ (O R32
VAABH	KOMKOVITE	BaZr[Si ₃ O ₉] [:] 2.4H ₂ O	R32
VAABI	PSEUDOWOLLASTONITE	Ca ₃ [Si ₃ O ₉]	P <u>1</u> or C2/c

SERIES C WALSTROMITE SERIES, tric/P1. The structure consists of $[Si_3O_9]^{6-}$ rings of Si tetrahedra in layers parallel to (101), with Ca ions about halfway between them. The Ba ions are roughly coplanar with the oxygen atoms. Refined structure consists of two different structural layers // to 101: a Si layer constituted by isolated 3-fold rings of SiO₄ tetrahedra and a Ca layer made by dimers of CaO₆ octahedra and chains of CaO₈ polyhedra interconnected via edge-sharing to form a Ca-polyhedral sheet. Additional edge-sharing chains of distorted 8-fold coordinated Pb polyhedra are also present. The isostructural comparison between margarosanite and walstromite are confirmed.

VAACA	WALSTROMITE	Ca ₂ Ba[Si ₃ O ₉]
VAACB	MARGAROSANITE	Ca ₂ Pb[Si ₃ O ₉]

SERIES D MATHEWROGERSITE, hex/R3,R3,R32,R3m, or R32/m. Neues Jahrbuch für Mineralogie, Monatshefte (1986): 5: 203-208.

American Mineralogist (1987): 72: 1025.

VAADA MATHEWROGERSITE

- SERIES E ROEBLINGITE, mon/C2/m. The structure consists of a ²_∞[Mn(Si₃O₉)₂]¹⁰⁻ corner-linked sheet oriented parallel to c{001}, the plane of perfect cleavage. The large cations are tucked between the above sheets. All vertices of the MnO₆ octahedron link to the (Si₃O₉) radicals which are oligosilicate three-membered rings and are geometrically similar to the rings in paragenetically related margarosanite. Coordination polyhedra include Pbψ₇; Ca(1)ψ₈ distorted square antiprisms; Ca(2)ψ₇ polyhedra similar to the Pb polyhedra.
- VAAEA ROEBLINGITE $Pb_2Ca_6(SO_4)_2(OH)_2(H_2O)_4[Mn(Si_3O_9)_2]$
- TYPE B FOUR TETRAHEDRA RING STRUCTURES (Si₄O₁₂)⁸⁻
- SERIES A TARAMELLITE SERIES, orth/Pmmn. The structure is based on the presence of B₂O₇ groups of two tetrahedra: they connect two four-fold rings of SiO₄ tetrahedra to form the anionic radical [B₄Si₈O₂₇]¹⁶. Boron is coordinated by two O(8) oxygens belonging to two different four-fold rings, by one of the "free" oxygens, O(3), of the old structure, and by a new oxygen O(10), which bridges the two tetrahedra of the B₂O₇ group. The anionic groups are superposed along a, with the planes of the four-fold rings roughly parallel to (100). Ba atoms lie between the four-fold rings, together with Cl, which is surrounded by three Ba atoms. The octahedral coordination of Me atoms is formed by four tetrahedron. Each Me octahedron shares two edges with two opposite adjacent octahedra; a chain of octahedra is thus formed along [100], and it connects four different anionic groups in the unit cell.

VABAA	TARAMELLITE	Ba ₄ (Fe,Ti) ₄ [B ₂ Si ₈ O ₂₇]O ₂ Cl _x
VABAB	TITANTARAMELLITE	Ba4(Ti,Fe,Fe,Mg)4[B2Si8O27]O2Clx
VABAC	NAGASHIMALITE	Ba ₄ (V,Ti) ₄ [B ₂ Si ₈ O ₂₇]O ₂ Cl _x

SERIES B BAOTITE, tetr/I4₁/a. Structure consists of Si₄O₁₂ rings // (001) which are connected by rutile-like chains // [001] of Ti and (Ti,Nb) octahedra; CI is accommodated between two rings, and Ca is in channels // [001].

VABBA BAOTITE Ba4Ti4(Ti,Nb,Fe)4[Si4O12]O16CI

SERIES C VERPLANCKITE, hex/P6/mmm. Structure consists of trimers of three corner-sharing MnO₅ square pyramids // (0001) which are connected into a framework by 4-membered rings of Si tetrahedra to form a framework with open channels // [0001], similar to those in muirite, that accommodate Ba and CI. The 4-membered rings are // (1010).

VABCA VERPLANCKITE Ba₁₂(Mn,Ti,Fe)₆[Si₄O₁₂]₃(O,OH)₂(OH,H₂O)₇Cl₉

KAINOSITE-PHOSINAITE SERIES, orth/Pmnb. The structure consists of a series of mixed layers of SERIES D tetrahedra and octahedra that are stacked along a. Two different types of layers are present: a (SiP) layer with the composition $[Na(SiO_4)_2(PO_4)]$, and a (NaP) layer with the composition $[Na(PO_4)]$; there are two (SiP) layers on each side of a central (NaP) layer. The (SiP) layer has SiO₄ and PO₄ tetrahedra that are cross-linked by Na(7)O₆ octahedra. Within the layer, rings and mixed Na(2)O₆-PO₄ rings, which are both centered about a 2 axis and alternate along a. These rings form channels among a, the cores of which are occupied by REEO₈ and Na(8)O₈ polyhedra. The remaining NaO₆ octahedra and both CaO₇ and (Na,Ca)O₇ polyhedra are positioned in the interstices between the rings. The (NaP) layer consists of PO₄ tetrahedra corner-linked to Na(2)O₆ octahedra, each PO₄ group sharing three of its corners with four Na(2)O6 octahedra. Linking of the (SiP) and (NaP) layers along a is accomplished among corner-sharing tetrahedra and octahedra, reinforced by edge- and face-sharing Na, Ca and REE polyhedra. The structure of cerchiaraite consists of single fourmembered rings [Si₄O₁₂], around the four-fold axes, corner-linked by [001] chains of edge-sharing Mn-octahedra. Other atoms share oxygens atoms with Mn-octahedra, to form two dimmers [Si₂O₇] per cell. The structure of bobmeyerite consists of tetrahedra which share corners to form fourmembered Si₄O₁₂ rings centered on the c axis. The rings are linked by chains of edge-sharing AlO₆ octahedra running // to [001]. The framework thereby created contains large channels, running // to [001]. The CI site is centered on the c axis alternating along [001] with the rings. Two nonequivalent Pb atoms are positions around the periphery of the channels both are eleven-

coordinated, bonding to the CI atom on the c axis, to 8 O atoms in the framework and to two O sites in the channel.

VABDA	KAINOSITE-(Y)	$Ca_2Y_2[Si_4O_{12}]_2(CO_3)$ H ₂ O
VABDB	ASHBURTONITE	HPb4Cu4[Si4O12][HCO3]4(OH)4Cl
VABDC	PHOSINAITE-(Ce)	Na ₁₃ (Na,Ca) ₂ Ca ₂ Ce[Si ₄ O ₁₂][PO ₄] ₄
VABDD	CLINOPHOSINAITE	Na ₁₂ Ca ₄ [Si ₄ O ₁₂][PO ₄] ₄
VABDE	BOBMEYERITE	$Pb_4Al_4(Si_4O_{12})(S,SiO_4)((OH)_7Cl(H_2O)_3$
VABDF	CERCHIARAITE-(Mn ³⁺)	$Ba_4Mn^{3+}{}_4O_3(OH)_3[Si_4O_{12}][Si_2O_3(OH)_4]Cl$
VABDG	CERCHIARAITE-(Fe)	$Ba_4Fe^{3+}{}_6O_3(OH)_3[Si_4O_{12}][Si_2O_3(OH)_4]CI$
VABDH	open	
VABDI	CERCHIARAITE-(AI)	Ba ₄ (AI,Fe ³⁺) ₆ O ₃ (OH) ₃ [Si ₄ O ₁₂][Si ₂ O ₃ (OH) ₄]Cl

SERIES E PAPAGOITE, mon/C2/m. Structure consists of edge-sharing Cu and Al octahedra alternating to form rutile-like chains // [010] that are linked into sheets //(001) by Ca octahedra; the sheets are connected along [001] by Si rings.

VABEA PAPAGOITE Ca₂Cu₂Al₂[Si₄O₁₂](OH)₆

SERIES F JOAQUINITE SERIES, orth/mon/ Ccmm, C2, P2₁2₁2₁. The structure of this group consists of a fourmembered Si₄O₁₂ silicate ring, equivalents of which are linked by TiO₆ octahedra to form sheets parallel to (001). Sheets are stacked facing alternately up and down in the c direction; Ba atoms and water molecules occur midway between sheets on one level, and Na, Fe, and RE atoms on the alternate levels. The Fe and Na polyhedra, which also link sheets, are very irregular; Fe is 5coordinated, and Na is 6-coordinated.

VABFA	BARIO-ORTHOJOAQUINITE	$(Ba,Sr)_4Fe_2Ti_2O_2[Si_4O_{12}]_2H_2O_2$
VABFB	BYELORUSSITE-(Ce)	$NaMnBa_2 Ce_2 Ti_2O_2[Si_4O_{12}]_2 (F,OH)^{-}H_2O$
VABFC	JOAQUINITE-(Ce)-2M	$NaBa_2 Ce_2 Fe(Ti,Nb)_2 O_2 [Si_4 O_{12}]_2 (F,OH)^{-}H_2 O_2 (F,OH)^{-}H_2 (F,OH)^{-}$
VABFD	JOAQUINITE-(Ce)-20	$NaBa_2 Ce_2 Fe(Ti,Nb)_2 O_2 [Si_4 O_{12}]_2 (F,OH)^{-}H_2 O_2 O_2 (F_1 O_1 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$
VABFE	STRONTIOJOAQUINITE	$Sr_2Ba_2(Na,Fe)_2Ti_2[Si_4O_{12}]_2(O,OH)_2H_2O$
VABFF	STRONTIO-ORTHOJOAQUINITE	$Sr_2Ba_2(Na,Fe)_2Ti_2[Si_4O_{12}]_2(O,OH)_2H_2O$
VABFG	ORTHOJOAQUINITE-(La)	$NaBa_{2} (La,Ce)_{2} Fe(Ti,Nb)_{2}O_{2}[Si_{4}O_{12}]_{2} (OH,O,F) H_{2}O_{2}$

SERIES G COLINOWENSITE, tetr/I41/acd. The structure consists of 4-membered single rings, arranged in sheets // to (001). The structure is further characterized by CuO4 squares sharing corners with four neighboring silicate rings within a sheet. Ba cations are bonded to ten O atoms in irregular coordination.

VABGA COLINOWENSITE Ba₂Cu₂[Si₄O₁₂]

SERIES I Open

SERIES J STRAKHOVITE, orth/Pnma. Structure consists of columns of Mn octahedra and Mn square pyramids // [010] which are connected by Si₄O₁₀(OH)₂ rings and Si₂O₇ groups. Zigzag chains // [001] of edgesharing Ba polyhedra and corner-sharing (Na, Ba) polyhedra creating a framework with channels // [010] that contain water.

VABJA STRAKHOVITE NaBa₅(Mn²⁺Mn³⁺)₄[Si₄O₁₀(OH)₂](Si₂O₇)O₂(F,OH) [·]H₂O

SERIES K LABUNTSOVITE SERIES, mon/Cm. The structure is based on Si₄O₁₂ rings // (100) and chains of corner –sharing Nb octahedra // [100]; Na atoms and water molecules are accommodated in the cavities. The structure of komarovite contains layers k (010) of pyrochlore composition, one pyrochlore period thick, where Na and Ca take eight-coordianted cation positions, and Nb (+Ti) six-

SERIES H Open

coordinated. The positions on surfaces of layers that are occupied by a monovalent anion in pyrochlore are in komarovite replaced by water molecules coordinated to Na atoms. The layers are interconnected by Si_4O_{12} rings with ring plane k (001). In the channels formed between layers and rings additional Na(+K) atoms are situated coordinated to O atoms from silicate rings and additional water molecules.

VABK01	NENADKEVICHITE	Na _{8-x} Nb ₄ [Si ₄ O ₁₂] ₂ (O,OH) ₄ ⁻ 8H ₂ O
VABK02	LABUNTSOVITE-Mn	Na ₄ K ₄ Mn ₂ Ti ₈ (Si ₄ O ₁₂) ₄ (O,OH) ₈ .10-12H ₂ O
VABK03	VUORIYARVITE-K	(K,Na) _{12-x} Nb ₈ [Si ₄ 0 ₁₂] ₄ (O) ₈ .12-16H ₂ O
VABK04	LEMMLEINITE-K	Na4K4K4Ti8(Si4O12)4(O,OH)8.8H2O
VABK05	KUZMENKOITE-Mn	$K_4Mn_2Ti_8[Si_4O_{12}]_4(OH)_8$ 10-12 H_2O
VABK06	KOROBITSYNITE	Na _{8-x} Ti ₄ [Si ₄ O ₁₂] ₂ (O,OH) ₄ ⁻ 8H ₂ O
VABK07	PARALABUNTSOVITE-Mg	Na ₈ K ₈ Mg ₈ Ti ₁₆ (Si ₄ O ₁₂) ₈ (O,OH) ₁₆ [:] 20-24H ₂ O
VABK08	LABUNTSOVITE-Fe	Na4K4]Fe2Ti8(Si4O12)4(O,OH)8] ⁻ 10-12H2O
VABK09	LEMMLEINITE-Ba	Na4K4Ba2-xTi8(Si4O12)4(O,OH)8 [·] 8H2O
VABK10	TSEPINITE-Na	Na(Na,H ₃ O,K,Sr,Ba) _{12-x} Ti ₈ [Si ₄ O ₁₂] ₄ (OH,O) ₈ .12-16H ₂ O
VABK11	ORGANOVAITE-Mn	K8Mn4Nb16(Si4O12)8O16.20-28H2O
VABK12	PARAKUZMENKOITE-Fe	(K,Ba) ₈ Fe ₄ Ti ₁₆ [Si ₄ O ₁₂] ₈ (O,OH) ₁₆ .20-28H ₂ O
VABK13	ORGANOVAITE-Zn	$K_8Zn_4Nb_{16}(Si_4O_{12})_8O_{16}.20\text{-}28H_2O$
VABK14	LABUNTSOVITE-Mg	$Na_4K_4Mg_2Ti_8(Si_4O_{12})_4(O,OH)_8.8-10H_2O$
VABK15	GJERDINGENITE-Fe	$K_4[(H_2O)_4(Fe,Mn)_2][(Nb,Ti)_8(Si_4O_{12})_4(Oh,O)_8]^*8H_2O$
VABK16	GUTKOVAITE-Mn	$Ca_2K_4Mn_2Ti_8(Si_4O_{12})_4O_8.10H_2O_6$
VABK17	KUZMENKOITE-Zn	K ₄ Zn ₂ Ti ₈ [Si ₄ O ₁₂] ₄ (OH) ₈ [:] 10-12H ₂ O
VABK18	KARUPMÖLLERITE-Ca	(Na,Ca,K) ₄ Ca ₂ Nb ₈ [Si ₄ O ₁₂] ₄ (O,OH) ₈ ⁻ 14H ₂ O
VABK19	ALSAKHAROVITE-Zn	$NaSrKZn(Ti,Nb)_{4}[Si_{4}O_{12}]_{2}(O,OH)_{4}.7H_{2}O$
VABK20	TSEPINITE-K	(K,Ba,Na) ₂ (Ti,Nb) ₂ [Si ₄ O ₁₂](O,OH) ₂ .3H ₂ O
VABK21	TSEPINITE-Ca	(Ca,Na,K) ₂ (Ti,Nb) ₂ [Si ₄ O ₁₂](O,OH) ₂ .3H ₂ O
VABK22	PARATSEPINITE-Ba	(Ba,Na,K) _{2-x} (Ti,Nb) ₂ [Si ₄ O ₁₂](OH,O) ₂ .4H ₂ O
VABK23	NESKEVAARAITE-Fe	$NaK_{3}Fe(Ti,Nb)_{4}(Si_{4}O_{12})_{2}(O,OH)_{4}.6H_{2}O$
VABK24	KOMAROVITE	$(Ca,Mn)_2Nb_4[(O,F)_2O_6/Si_4O_{12}] . 7H_2O$
VABK25	NA-KOMAROVITE	(Na,Ca,H) ₂ [(OH,F) ₂ O ₄ /Si ₄ O ₁₂].H ₂ O
VABK26	LEPKHENELMIITE-Zn	Ba ₂ Zn(Ti,Nb)4[Si4O ₁₂]2(O,OH)4.7H2O
VABK27	GJERDINGENITE-Mn	K4[(H2O)4(Mn,Fe)2][(Nb,Ti)8(Si4O12)4(Oh,O)8] ⁻ 6H2O
VABK28	GJERDINGENITE-Ca	K ₂ Ca(Nb,Ti) ₄ (Si ₄ O ₁₂) ₂ (O,OH) ₄ · 6H ₂ O
VABK29	GJERDINGENITE-Na	(K,Na) ₂ Na(Nb,Ti) ₄ (Si ₄ O ₁₂) ₂ (OH,O) ₄ ⁻ 5H ₂ O
VABK30	PARATSEPINITE-Na	(Na,K,Ba) _{2-x} (Ti,Nb) ₂ [Si ₄ O ₁₂](OH,O) ₂ .4H ₂ O
VABK31	TSEPINITE-Sr	(Sr,Ca,K) ₂ (Ti,Nb) ₂ [Si ₄ O ₁₂](O,OH) ₂ .3H ₂ O
VABK32	BUROVAITE-Ca	(K,Na,Sr,Ba) ₄ Ca ₂ (Ti,Nb) ₈ [Si ₄ O ₁₂] ₄ (OH,O) ₈ .12H ₂ O

TYPE C SIX TETRAHEDRA RING STRUCTURES (Si₆O₁₈)

SERIES A ODINTSOVITE, orth/Fddd. Structure consists of Si₆O₁₈ rings //(110) which are connected into bands // [110] and [<u>1</u>10] by insular Be tetrahedra; the bands are linked into a heteropolyhedral framework by edge-sharing pairs of Ti octahedra; Ca and alkali ions are accommodated in cavities.

VACAA ODINTSOVITE $K_2(Na,Li)_4Ca_3\{Ti_2O_2[Be_4(Si_6O_{18})_2]\}$

SERIES B LOVOZERITE SERIES, trig/R3m. Structure consists of 6-membered rings with tetrahedra pointing alternately up and down. Na and Ca are both in 6- and 8-fold coordination.

VACBA	IMANDRITE	Na ₆ Ca _{1.5} Fe(Si ₆ O ₁₈)
VACBB	KAZAKOVITE	Na ₆ (Mn,H ₂)Ti(Si ₆ O ₁₈)
VACBC	KOASHVITE	Na ₆ (Ca,Mn)(Ti,Fe)(Si ₆ O ₁₈) [·] H ₂ O
VACBD	LOVOZERITE	Na ₂ Ca(Zr,Ti)(Si ₆ (O,OH) ₁₈)
VACBE	PETARASITE (Related)	$Na_5Zr_2(Si_6O_{18})(CI,OH)^2H_2O$
VACBF	TISINALITE	$Na_{3}H_{3}(Mn,Ca,Fe)(Si_{6}(O,OH)_{18})^{-}2H_{2}O$
VACBG	ZIRSINALITE	Na ₆ (Ca,Mn,Fe)Zr(Si ₆ O ₁₈)
VACBH	LITVINSKITE	Na₂(□,Na,Mn)Zr[Si ₆ O ₁₂ (OH,O) ₆]
VACBI	COMBEITE	Na ₄ Ca ₄ [Si ₆ O ₁₈]
VACBJ	KAPUSTINITE	Na₅(Na,Mn ²⁺)<1Zr[Si ₆ O ₁₆ (OH)₂]
VACBK	TOWNENDITE	Na ₈ Zr(Si ₆ O ₁₈)

SERIES C BARATOVITE SERIES, mon,C2/c. The structure consists of Si₆O₁₈ rings connected by dense Caoctahedral sheets and by Ti-octahedra, Li-tetrahedra, and 12-fold K-polyhedra. The structure of katayamalite contains a set of six-membered silicate rings interconnected by sheets of Ca atoms on one side and by an ordered mixture of Li, Ti and K atoms on the other side, forming layers which are stacked normal to (001). From the eight different metal sites, three are located on special positions, viz. on K and one Li atom on twofold rotation axes and one Ca atom on an inversion center.

VACCA	BARATOVITE	Li ₃ KCa ₇ Ti ₂ [Si ₆ O ₁₈] ₂ F ₂
VACCB	KATAYAMALITE	Li ₃ KCa ₇ Ti ₂ [Si ₆ O ₁₈] ₂ (OH) ₂
VACCC	ALEKSANDROVITE	KCa ₇ Sn ₂ Li ₃ [Si ₁₂ O ₃₆]F ₂

SERIES D BERYL SERIES, hex, P6/mcc. The structure is formed by 6-membered rings of Si tetrahedra linked by BeO₄ tetrahedra, resulting in a framework. The AI atoms are located in the voids in octahedral coordination.

VACDA	BERYL	$Be_3Al_2[Si_6O_{18}]$
VACDB	BAZZITE	Sc ₃ Al ₂ [Si ₆ O ₁₈]
VACDC	STOPPANIITE	(Fe,Mg,Al)₂(Na,□)[Be₃Si ₆ O ₁₈] · H₂O
VACDD	INDIALITE	$Mg_{2}[^{4}(AI_{4}Si_{5})O_{18}]$
VACDE	PEZZOTTAITE	Cs(Be ₂ Li)Al ₂ Si ₆ O ₁₈
VACDF	FERROINDIALITE	(Fe,Mg) ₂ [⁴ (Al ₄ Si ₅)O ₁₈]
VACDG	AVDEEVITE	(Na,Cs)(Be ₂ Li)Al ₂ (Si ₆ O ₁₈)

SERIES E DIOPTASE, hex/R<u>3</u>. The structure is based on distorted CuO₄(H₂O)₂ octahedra sharing edges to form dimmers that are connected by corners to four other dimmers, and link the silicate rings into a 3-dimensional framework. Each outer O atom of the rings is linked to one Si and two Cu atoms. Water rings are accommodated in the open structure.

VACEA DIOPTASE Cu₆ [Si₆O₁₈][·]6H₂O

SERIES F SCAWTITE, mon/l2/m. The structure of scawtite has four Ca sites with three types of coordination; Ca1 and Ca1B have 7-fold coordination, Ca2 has 6-fold coordination, and Ca3 has 8-fold coordination. The three Si tetrahedra form Si₆O₁₈ rings, separated by triangular CO₃ groups. The structure is layer on (101), with the silicate rings and carbonate groups in one layer, and the CaO_n polyhedra in the other.

VACFA SCAWTITE Ca7[Si6O18][CO3]2H2O

SERIES G TOURMALINE SERIES, hex/R3m. The structure is based on the packing of $[Si_6O_{18}]$ and BO₃ groups in a ring structure, with Mg, AI, and Na atoms and OH in the interstices.

VACGA	FLUOR-BUERGERITE	NaFe3Al6(BO3)3(Si6O18)O3F
VACGB	CHROMDRAVITE	Na(Cr ₂ Mg)(Cr ₄ Mg ₂)(BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₄
VACGC	DRAVITE	NaMg ₃ Al ₆ (BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₄
VACGD	ELBAITE	Na(Li,Al) ₃ Al ₆ (BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₄
VACGE	FERUVITE	$Ca(Fe,Mg)_{3}(AI,Mg)_{6}(BO_{3})_{3}(Si_{6}O_{18})(OH)_{4}$
VACGF	FOITITE	 (Fe₂(AI,Fe))Al₆(BO₃)₃(Si₆O₁₈)(OH)₄
VACGG	FLUOR-LIDDICOATITE	$Ca(Li,AI)_{3}AI_{6}(BO_{3})_{3}(Si_{6}O_{18})(O,OH,F)_{4}$
VACGH	OLENITE	$NaAI_{3}AI_{6}(BO_{3})_{3}(Si_{6}O_{18})(O,OH)_{4}$
VACGI	POVONDRAITE	NaFe3Fe6(BO3)3(Si6O18)(O,OH)4
VACGJ	SCHORL	NaFe ₃ Al ₆ (BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₄
VACGK	FLUOR-UVITE	$(Ca,Na)(Mg,Fe)_{3}Al_{5}Mg(BO_{3})_{3}(Si_{6}O_{18})(OH,F)_{4}$
VACGL	ROSSMANITE	$(LiAI_2)AI_6(Si_6O_{18})(BO_3)_3(OH)_4$
VACGM	MAGNESIOFOITITE	$(Mg_2,AI)AI_6[Si_6O_{18})(BO_3)_3(OH)_4$
VACGN	OXY-VANADIUM-DRAVITE	NaV ₃ (V ₄ Mg ₂)(Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ O
VACGO	HYDROXYUVITE	$CaMg_{3}(AI_{5}Mg)[Si_{6}O_{18}](BO_{3})_{3}(OH)_{3}(OH)$
VACGP	LUINAITE-(OH)	(Na,□)(Fe,Mg) ₃ Al ₆ (BO ₃) ₃ Si ₆ O ₁₈ (OH) ₄
VACGQ	CHROMO-ALUMINO-POVONDRAITE	NaCr ₃ (Al ₄ Mg ₂)(Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ O
VACGR	FLUOR-DRAVITE	NaMg ₃ Al ₆ O ₁₈ (BO ₃) ₃ (OH) ₃ F
VACGS	FLUOR-SCHORL	NaFe ₃ Al ₆ (BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₃ F
VACGT	VANADIO-OXY-DRAVITE	NaV ₃ (Al ₄ Mg ₂)(Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ O
VACGU	OXY-SCHORL	$Na(Fe^{2+}_{2}AI)AI_{6}Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}O$
VACGV	TSILAISITE	NaMn ²⁺ Al ₆ (Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ OH
VACGW	FLUOR-ELBAITE	$Na(Li_{1.5}AI_{1.5})AI_{6}(Si_{6}O_{18})(BO_{3})_{3}(OH)_{3}F$
VACGX	OXY-CHROMIUM-DRAVITE	$NaCr_{3}(Cr_{4}Mg_{2})(Si_{6}O_{18})(BO_{3})_{3}(OH)_{3}O$
VACGY	DARRELLHENRYITE	NaLiAl ₂ Al ₆ (BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₃ O
VACGZ	OXY-DRAVITE	$Na(Al_2Mg)(Al_5Mg)(SiO_{18})(BO_3)_3(OH)_3O$
VACG27	VANADIO-OXY-CHROMIUM-DRAVITE	$NaV_{3}(Cr_{4}Mg_{2})(Si_{6}O_{18})(BO_{3})_{3}(OH)_{3}O$
VACG28	FLUOR-TSILAISITE	$NaMn_{2+3}Al_{6}(Si_{6}O_{18})(BO_{3})_{3}(OH)_{3}F$
VACG29	ADACHIITE	CaFe ²⁺ ₃ Al ₆ (Si ₅ AlO ₁₈)(BO ₃) ₃ (OH) ₃ (OH)
VACG30	MARUYAMAITE	$K(MgAl_2)(Al_5Mg)(BO_3)_3(Si_6O_{18})(OH)_3O$
VACG31	BOSIITE	NaFe ³⁺ ₃ (Al ₄ Mg ₂)(Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ O
VACG32	LUCCHESIITE	CaFe ²⁺ ₃ Al ₆ (Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ O
VACG33	OXY-FOITITE	□(Fe ²⁺ Al ₂)Al ₆ (Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ O

SERIES H KOSTYLEVITE, mon/P21/a. Structure based on a framework of tetrahedral Si₆O₁₈ rings linked by Zr octahedra. The framework has wide channels along [001] in which half of the K atoms and all the water molecules are accommodated.

VACHA KOSTYLEVITE K₄Zr₂[Si₆O₁₈][•]2H₂O

SERIES I ABENAKIITE, trig/R<u>3</u>. The structure consists of trigonal Si₆O₁₈ rings // (0001), with free corners alternating up and down, which are attached on both sides to one Na and three carbonate groups. This complex is part of a column // [0001] with three Na polyhedra and one REE polyhedron; chains of alternating Na polyhedra and P tetrahedra are located between the columns. SO₂ groups are in the cavities. Steenstrupine-(Ce) is closely related with identical rings.

VACIA	ABENAKIITE-(Ce)	Na ₂₆ REE ₆ [Si ₆ O ₁₈][PO ₄] ₆ (CO ₃) ₆ (SO ₂)O
VACIB	STEENSTRUPINE-(Ce)	$Na_{14}Ce_{6}MnMnFe_{2}(Zr,Th)[Si_{6}O_{18}]_{2}(PO_{4})_{7}(OH)_{2} \ 3H_{2}O \ R\underline{3}m$
VACIC	THOROSTEENSTRUPINE	Na ₀₋₅ Ca ₁₋₃ (Th,REE) ₆ (Mn,Fe,Al,Ti) ₄₋₅ -
		$[Si_6(O,OH)_{18}]_2[(Si,P)O_4]_6(OH,F,O)_x.nH_2O$

SERIES J GERENITE-(Y), tric/P1. The structure consists of the following elements: (1) Si₆O₁₈ rings, oriented approximately parallel to (101), (2) chains of edge-sharing Y(1)O₆ and Y(2)O₆ octahedra oriented approximately parallel to [101], and (3) Ca ϕ_8 polyhedra. The rings share corners with the chains of YO₆ octahedra to form a three-dimensional framework.

VACJA GERENITE-(Y) (Ca,Na)₂(Y, REE)₃[Si₆O₁₈] . 2H₂O

SERIES K CORDIERITE SERIES, orth/Cccm. The structure is based on a distortion substitution derivative of the beryl structure.

VACKA	CORDIERITE	Mg ₂ [⁴ (Al ₄ Si ₅)O ₁₈]
VACKB	SEKANINAITE	$(Fe,Mg)_2[^4(Al_4Si_5)O_{18}]$

TYPE D EIGHT TETRAHEDRA RING STRUCTURES (Si₈O₂₄)

SERIES A MUIRITE, tetr, P4/mmm. Structure consists of 8-membered $[Si_8O_{24}]^{16-}$ rings // (001) which are linked by Ca and Ti trigonal prisms to form a framework with Ba, CI and OH in the cavities.

VADAA MUIRITE Ba10(Ca,Mn,Ti)4[Si8O24](CI,O,OH)12 H2O

TYPE E NINE TETRAHEDRA RING STRUCTURES (Si₉O₂₇)

SERIES A EUDIALYTE SERIES, hex/R<u>3</u>m. Structure consists of two sheets of Si₃O₉ and Si₉O₂₇ rings // (0001) which are sandwiched by 6-membered rings o edge-sharing Ca octahedra and by (Fe,Mn) polyhedra to form double sheets. In the unit cell, three such double sheets are interconnected by nine Zr octahedra to form a framework with elongated cavities // [0001] that contain (Na,Ca,REE), (F,CI,O,OH, H₂O) and Si-Nb-W.

VAEAA	EUDIALYTE	Na ₁₅ Ca ₆ Fe ₃ Zr ₃ Si[Si ₂₅ O ₇₃](O,OH,H ₂ O) ₃ (Cl,OH) ₂
VAEAB	ALLUAIVITE	Na ₁₉ (Ca,Mn) ₆ (Ti,Nb) ₃ [Si ₂₆ O ₇₄]Cl [·] 2H ₂ O
VAEAC	KENTBROOKSITE	Na ₁₅ Ca ₆ Mn ₃ Zr ₃ Nb(Si ₂₅ O ₇₃)(O,OH,H ₂ O) ₃ (F,Cl) ₂
VAEAD	KHOMYAKOVITE	Na ₁₂ Sr ₃ Ca ₆ Fe ₃ WZr ₃ [Si ₂₅ O ₇₃](O,OH,H ₂ O) ₃ (CI,OH) ₂
VAEAE	MANGANOKHOMYAKOVITE	$Na_{12}Sr_3Ca_6Mn_3WZr_3[Si_{25}O_{73}](O,OH,CI)_3(CI,OH)_2$
VAEAF	ONEILLITE	$Na_{15}Ca_3Fe_3Mn_3NbZr_3[Si_{25}O_{73}](OH,CI)_2(O,OH,H_2O)_3$
VAEAG	AQUALITE	$(H_{3}O)_{8}(Na,K,Sr)_{5}Ca_{6}Zr_{3}Si_{26}O_{66}(OH)_{9}CI$
VAEAH	FERROKENTBROOKSITE	Na ₁₅ Ca ₆ Fe ₃ Zr ₃ Nb(Si ₂₅ O ₇₃)(O,OH,H ₂ O) ₃ (F,CI) ₂
VAEAI	FEKLICHEVITE	Na ₁₁ Ca ₉ (Fe,Fe) ₂ Zr ₃ Nb[Si ₂₃ O ₇₃](OH,H ₂ O,Cl,O) ₅
VAEAJ	CARBOKENTBROOKSITE	(Na,□) ₁₂ (Na,REE) ₃ Ca ₆ Mn ₃ Zr ₃ Nb(Si ₂₅ O ₇₃)(OH) ₃ (CO ₃).H ₂ O
VAEAK	GEORGBARSANOVITE	$Na_{12}(Mn,Sr,REE)_3Ca_6Fe_3Zr_3Nb(Si_{25}O_{76})Cl_2.H_2O$
VAEAL	IKRANITE	$(Na,H_3O)_{15}(Ca,Mn,REE)_6Fe_2Zr_3(\Box,Zr)(\Box,Si)(Si_{24}O_{66})(O,OH)_6Cl.nH_2O$
VAEAM	LABYRINTHITE	$(Na,K,Sr)_{3}Ca_{12}Fe_{3}Zr_{6}Ti(Si_{51}O_{144})(O,OH,H_{2}O)_{9}Cl_{2}$
VAEAN	RASLAKITE	Na ₁₅ (Ca ₃ Fe ₃)(Na,Zr) ₃ (Si,Nb)(Si ₂₅ O ₇₃)(OH,H ₂ O) ₃ (CI,OH) ₂
VAEAO	RASTSVETAEVITE	Na ₂₇ K ₈ Ca ₁₂ Fe ₃ Zr ₆ (Si ₅₂ O ₁₄₄)(O,OH,H ₂ O) ₆ Cl ₂
VAEAP	TASEQITE	Na ₁₂ Sr ₃ Ca ₆ Fe ₃ Zr ₃ Nb(Si ₂₅ O ₇₃ (O,OH,H ₂ O) ₃ Cl ₂
VAEAQ	ZIRSILITE-(Ce)	(Na,□) ₁₂ (REE,Na) ₃ Ca ₆ Mn ₃ Zr ₃ Nb(Si ₂₅ O ₇₃)(OH) ₃ (CO ₃).H ₂ O
VAEAR	ZAKHAROVITE-Mn ²⁺	$Na_3 Mn^{2+}{}_5Na0[Si_9O_{24}(OH)_3.Si(OH)_3]^{-}6H_2O$
VAEAS	JOHNSENITE-(Ce)	Na ₁₂ (Ce,REE,Sr) ₃ Ca ₆ Mn ₆ Zr ₃ W(Si ₂₃ O ₇₃)(OH) ₃ (CO ₃).H ₂ O

VAEAT	MOGOVIDITE	Na₃(Ca,Na)₅Ca₅Zr₃⊡Si₂₅O ₇₂ (CO₃)(OH)₄
VAEAU	GOLYSHEVITE	Na ₃₀ (Ca,Na,Ce,Sr) ₁₂ (Na,Mn,Fe,Ti) ₆ Zr ₃ Ti ₃ Mn(Si ₅₁ O ₁₄₄)(OH,H ₂ O,Cl) ₉
VAEAV	'ZAKHAROVITE-Fe ^{2+'}	$Na_3 (Fe^{2+}, Mn^{2+})_5 Na0 [Si_9O_{24}(OH)_3.Si(OH)_3] GH_2O$
VAEAW	DUALITE	Na ₃₀ (Ca,Na,Ce,Sr) ₁₂ (Na,Mn,Fe) ₆ Zr ₃ Ti ₃ Mn[(OH,H ₂ O,Cl) ₉ /Si ₅₁ O ₁₄₄]
VAEAX	ANDRIANOVITE	Na ₁₂ (K,Sr,Ce) ₃ Ca ₆ Mn ₃ Zr ₃ Nb(Si ₂₅ O ₇₃)(O,H ₂ O,OH) ₅
VAEAY	VORONKOVITE	Na ₁₅ (Na,Ca,Ce) ₃ (Mn,Ca) ₃ Fe ₃ Zr ₃ (Si ₂₆ O ₇₂)(OH,O) ₄ .H ₂ O
VAEAZ	MANGANOEUDIALYTE	Na ₁₄ Ca ₆ Mn ₃ Zr ₃ [Si ₂₆ O ₇₂ (OH) ₂](H ₂ O,CI,O,OH) ₆
VAEA27	DAVINCIITE	Na ₁₂ K ₃ Ca ₆ Fe ²⁺ ₃ Zr ₃ (Si ₂₆ O ₇₃ OH)Cl ₂
VAEA28	FENGCHENGITE	Na ₁₂ □ ₃ (Ca,Sr) ₆ Fe ₃ Zr ₃ Si(Si ₂₅ O ₇₃)(H ₂ O,OH) ₃ (OH,Cl) ₂
VAEA29	ILYUKHINITE	(H ₃ O,Na) ₁₄ Ca ₆ Mn ₂ Zr ₃ (Si ₂₆ O ₇₂ (OH) ₂).3H ₂ O
VAEA30	SIUDAITE	Na ₈ (Mn ²⁺ ₂ Na)Ca ₆ Fe ³⁺ ₃ Zr ₃ NbSi ₂₅ O ₇₄ (OH) ₂ Cl.5H ₂ O

SERIES B MEGACYCLITE, mon/P2₁/c. Structure based on 18 Si(O,OH)₄ tetrahedra which are linked into [Si₁₈O₃₆(OH)₁₈]¹⁸⁻ rings // (001); corner-sharing Na polyhedra form chains // [010] lying in the (001) plane; the chains are linked by K octahedra and edge-sharing dimers of Na polyhedra.

- VAEBA MEGACYCLITE Na₈K[Si₉O₁₈(OH)₉]₂·19H₂O
- SERIES C CAPPELENITE, trig/P3. The structure is based on a ²...[Si₃B₆O₂₄] tetrahedral corner-sharing sheet consisting of [B₆O₁₈] six-membered and [Si₃B₆O₂₇] nine-membered ring. The nine-membered rings are isomorphic to the insular [Si₃Si₆O₂₇] rings in eudialyte. [BaO₁₂] defines an hexagonal antiprism; [YO₇F], square antiprisms; [SiO₄] and BO₄], tetrahedra.

VAECA CAPPELENITE-(Y) Ba(Y,REE)₆[Si₃B₆O₂₄]F₂

TYPE F TWELVE TETRAHEDRA RING STRUCTURES (Si₁₂O₃₆)

- SERIES A TRASKITE, hex/P6m2. Structure consists of 12-membered Si₁₂(O<OH)₃₆ rings // (0001) which hare linked into a framework by edge- and corner-sharing Ba polyhedra, (Ca, Sr) trigonal prisms, (Ti, Fe) octahedra and Si₂O₆OH groups; water molecules are accommodated in large channels // [0001].
- VAFAA TRASKITE (Ca,Sr)Ba₂₄(Mg,Mn,Fe.Al)₁₆[Si₂O₇]₆[Si₁₂O₃₆](O,OH)₃₀Cl₆⁻¹4H₂O

TYPE G FOUR TETRAHEDRA RING STRUCTURES (BRANCHED)

- SERIES A EAKERITE, mon/P2₁/a. The structure is based on crankshaft-like chains, similar to those in feldspars, of composition AlSi₃O₉(OH), which are cross-linked to form a kinked sheet. Al is ordered, and the OH is bonded to it. Ca and Sn ions lie in sheets between the kinked aluminosilicate network. The Ca ions are coordinated by 40, 2OH, and 2H₂O in square antiprism; these are edge-linked into chains which run across the aluminosilicate chains and which are cross-linked by Sn octahedra. The OH and H₂O are bonded to Ca and, by H bonds, to other O.
- VAGAA EAKERITE Ca₂Al₂Sn[Si₄O₁₂(SiO₃)₂](OH)₂·2H₂O

TYPE H SIX TETRAHEDRA RING STRUCTURES (BRANCHED)

- SERIES A TIENSHANITE, hex/P6/m. Structure based on a mica-like arrangement consisting of sheets of Si₆O₁₈ rings and 6-membered Si₃B₃O₁₈ rings enclosing sheets of MnO₅ square pyramids, TiO₆ octahedra and Ba polyhedra; the Mn pyramids share edges to form 6-membered rings. The mica-like layers are linked by K, Ca and Na atoms.

TYPE I EIGHT TETRAHEDRA RING STRUCTURES (LOOPED-BRANCHED)

SERIES AHYALOTEKITE SERIES, tric/I1. The structure has three principal linked components:
 $^{\circ}_{\sim}$ [Si₄O₁₂] four-membered rings, $^{\circ}_{\sim}$ [B₂(Si_{3/2}Be_{1/2})O₁₂] four-membered rings and [Ca₂Pb₄O₂₆F]
clusters. The tetrahedra link to form an incomplete framework of composition $^{3}_{\sim}$ [T₆O₁₄]

which remotely resembles that of the feldspars. The hyalotekite structure has a remote structural kinship with that of gillespite. The structure of itsiite is based upon a zeolite-like tetrahedral framework of corner-sharing tetrahedral consisting of four-membered silicate rings alternating with four-membered borate rings. The framework contains channels along each axis that host the Ba ions in ninefold coordination and Ca ions in sixfold coordination. The structure is very similar to those of hyalotekite and kapitsaite-(Y).

VAIAA	HYALOTEKITE	(Ba,Pb,K) ₄ (Ca,Y) ₂ Si ₈ (B,Be) ₂ (Si,B) ₂ O ₂₈ F
VAIAB	KAPITSAITE-(Y)	$(Ba,Pb,K)_4(Y,Ca)_2Si_8(B,Be)_2(Si,B)_2O_{28}F$
VAIAC	KHVOROVITE	(Pb,Ba,K) ₄ (Ca) ₂ Si ₈ (B,Be) ₂ (Si,B) ₂ O ₂₈ F
VAIAC	ITSIITE	Ba ₂ Ca[BSi ₂ O ₇] ₂

GROUP B DICYCLOSILICATES

TYPE A THREE TETRAHEDRA RING STRUCTURES (³Si₆O₁₅)

SERIES A MOSKVINITE-(Y), orth/lbmm. The structure consists of two tetrahedrally coordinated T sites occupied by Si. The tetrahedra form three-membered double rings that link by sharing apical vertices to form a double ring of the form [Si₆O₁₅]. There are two [6]-coordinated sites, one occupied by (Y+REE) and the other occupied by Na. There is a [10]-coordinated site occupied by K. The {(Y,REEO₆} and (NaO₆) octahedra share common edges to form sheets parallel to (010); these sheets connect through [Si₆O₁₅] double-rings to form a framework. Channels extend along {001} and contain K. Ref. CM 41-513.

VBAAA MOSKVINITE-(Y) Na₂K(Y,REE)[Si₆O₁₅]

TYPE B FOUR TETRAHEDRA RING STRUCTURES (⁴Si₈O₂₀)

SERIES A STEACYITE SERIES, tetr/P4/mcc. The structure of this series consists of pseudo-cubic 4-membered double rings (cages) of Si tetrahedra are linked into a 3-dimensional framework by the cations.

VBBAA	IRAQITE-(La)	K(La,Ce,Th) ₂ (Ca,Na) ₄ [Si ₈ O ₂₀] ₂
VBBAB	STEACYITE	K _{1-x} (Na,Ca) _{2-y} Th _{1-z} [Si ₈ O ₂₀]
VBBAC	TURKESTANITE	Th(Ca,Na)₂(K _{1-x} □ _x)[Si ₈ O ₂₀] . nH ₂ O
VBBAD	ARAPOVITE	U ⁴⁺ (Ca,Na)₂(K _{1-x} □ _x)[Si ₈ O ₂₀]

- TYPE C FIVE TETRAHEDRA RING STRUCTURES (⁵Si₁₀O₂₅)
- TYPE D SIX TETRAHEDRA RING STRUCTURES (⁶Si₁₂O₃₀)
- SERIES A OSUMILITE SERIES, hex/orth/P6/mcc/Pnna. The structure is based on the general formula CA₂(T2)₃(T1)₁₂O₃₀) where C is a 12-coordinated site located between two double rings of (Si,Al)O₄ tetrahedra T1 is mainly occupied by K. There is a strong positive correlation between the size of the cations (Mg,Fe,Al) in octahedral coordination of the A site and the length of the a axis.

VBDAA	ARMENITE	BaCa ₂ Al ₃ [Al ₃ Si ₃ O ₃₀] [·] 2H ₂ O
VBDAB	BRANNOCKITE	KSn ₂ Li ₃ [Si ₁₂ O ₃₀]
VBDAC	CHAYESITE	K(Mg,Fe) ₄ Fe[Si ₁₂ O ₃₀]
VBDAD	DARAPIOSITE	Na ₂ KLi(Zn,Mn) ₂ Zr[Si ₁₂ O ₃₀]
VBDAE	EIFELITE	KNa ₃ Mg ₄ [Si ₁₂ O ₃₀]
VBDAF	EMELEUSITE	$Na_4Li_2Fe_2[Si_{12}O_{30}]$
VBDAG	MERRIHUEITE	(K,Na) ₂ (Fe,Mg) ₅ [Si ₁₂ O ₃₀]
VBDAH	MILARITE	KCa ₂ AlBe ₂ [Si ₁₂ O ₃₀].0.5H ₂ O
VBDAI	OSUMILITE-(Fe)	(K,Na)(Fe,Mg) ₂ (AI,Fe) ₃ [(Si,AI) ₁₂ O ₃₀]
VBDAJ	OSUMILITE-(Mg)	(K,Na)(Mg,Fe) ₂ (Al,Fe) ₃ [(Si,Al) ₁₂ O ₃₀]
VBDAK	POUDRETTEITE	$KNa_2B_3[Si_{12}O_{30}]$
VBDAL	ROEDDERITE	(Na,K) ₂ (Mg,Fe) ₅ [Si ₁₂ O ₃₀]

VBDAM	SOGDIANITE	(K,Na) ₂ (Li,Fe) ₃ (Zr,Ti,Fe)[Si ₁₂ O ₃₀]
VBDAN	SUGILITE	KNa2(Fe,Mn,Al)2Li3 [Si12O30]
VBDAO	YAGIITE	(Na,K) _{1.5} Mg ₂ (Al,Mg) ₃ [(Si,Al) ₁₂ O ₃₀]
VBDAP	BEREZANSKITE	$KLi_3Ti_2Si_{12}O_{30}$
VBDAQ	SHIBKOVITE	K(Ca,Mn,Na) ₂ (K _{2-x} • _x) ₂ Zn ₃ Si ₁₃ O ₃₀
VBDAR	DUSMATOVITE	K(K,Na,□)(Mn,Y,Zn)₂(Zn,Li)₃[Si ₁₂ O ₃₀]
VBDAS	TRATTNERITE	(□,K)(Mg,Fe ²⁺) ₃ Fe ³⁺ ₂ [Si ₁₂ O ₃₀]
VBDAT	ALMARUDITE	K(□,Na)₂(Mn,Fe,Mg)₂(Be,Al)₃[Si ₁₂ O ₃₀]
VBDAU	OFTEDALITE	(ScCa)KBe ₃ Si ₁₂ O ₃₀
VBDAV	FAIZIEVITE	$K_2Na(Ca_6Na)Ti_4Li_6[Si_6O_{18}]_2[Si_1O_{30}]F_2$
VBDAW	KLOCHITE	K□ ₂ (Fe ²⁺ Fe ³⁺)Zn ₃ [Si ₁₂ O ₃₀]
VBDAX	FRIEDRICHBECKEITE	K(⊡Na)Mg₂(Be₂Mg)Si₁₂O₃₀
VBDAY	AGAKHANOVITE-(Y)	YCaKBe ₃ Si ₁₂ O ₃₀ .H ₂ O
VBDAZ	ALUMINOSUGILITE	$KNa_2AI_2Si_3Si_{12}O_{30}$
VBDA27	LAURENTTHOMASITE	$Mg_2K(Be_2AI)Si_{12}O_{30}$
GROUP C	TRICYCLOSILICATES	

- GROUP C TRICYCLOSILICATES
- GROUP D TETRACYCLOSILICATES
- GROUP E PENTACYCLOSILICATES
- GROUP F HEXACYCLOSILICATES

Checked 05/10/19