PHOSPHATES, ARSENATES, VANADATES

CLASS M	Phosphates, Arsenates and Vanadates
GROUP A	Phosphates Without Additional Anions, Without Water.
TYPE A	Small Cations.
SERIES A	BERLINITE SERIES. Quartz structure type, trig/ $\mathrm{P}_{1} 21$ or $\mathrm{P}_{2} 21$. Structure consists of Si tetrahedra connected in such a way as to form spirals along [0001]; the spirals can be only left-handed or only right-handed; narrow channels along [0001] can accommodate Li atoms by the substitution of LiAl for Si . Quartz is isostructural.
MAAAA	BERLINITE $\quad \mathrm{AlPO}_{4}$
MAAAB	ALARSITE AlAsO_{4}
MAAAC	RODOLICOITE FePO_{4}
SERIES B	BERYLLONITE, mon $/ P 2_{1} / \mathbf{n}$. Trimerite Structure type. Structure consists of three \mathbf{P} and 3 Be tetrahedra alternating in 6-membered rings connected into a honeycomb pattern, forming sheets // (010) ; the sheets are polymerized into a framework ; Na is accommodated in channels // [010].
MAABA	BERYLLONITE $\mathrm{Na}\left(\mathrm{BePO}_{4}\right)$
SERIES C	HURLBUTITE SERIES, mon/P2 ${ }_{1} / \mathrm{a}$. Danburite Structure type. The hurlbutite structure consists of alternating BeO_{4} and PO_{4} tetrahedra forming a framework of 4-, 6-, and 8-membered rings analogous to danburite.
MAACA	HURLBUTITE $\quad \mathrm{Ca}\left(\mathrm{Be}_{2} \mathrm{P}_{2} \mathrm{O}_{8}\right)$
MAACB	FILATOVITE $\quad \mathrm{K}\left[(\mathrm{Al}, \mathrm{Zn})_{2}\left(\mathrm{As}, \mathrm{Si}_{2}\right)_{2} \mathrm{O}_{8}\right]$
MAACC	STRONTIOHURLBUTITE $\quad \mathrm{SrBe}_{2}(\mathrm{PO})_{2}$
SERIES D	LITHIOPHOSPHATE, orth/Pbnm. Structure consists of an oxygen topology as in triphylite; LiO_{4} and PO_{4} tetrahedra sharing corners to form a framework. Comparable to the Olivine structure type based on zigzag chains of edge-sharing octahedra cross-linked by Si tetrahedra sharing three edges with the octahedra.
MAADA	LITHIOPHOSPHATE $\quad \mathrm{Li}_{3} \mathrm{PO}_{4}$
SERIES E	NALIPOITE, orth/Pbnm. The structure consists of LiO_{4} tetrahedra forming open, corrugated sheets perpendicular to y; these sheets are cross-linked and reinforced by PO_{4} tetrahedra and, to a lesser extent, by NaO_{6} octahedra, which, by alternation with the PO_{4} tetrahedra, form chains along x . Li and \mathbf{P} tetrahedra share three corners to form a framework based on a stacking of interlinked, fourconnected two-dimensional nets // (001), with Na octahedra in the cavities; the lattice is related to that of triphylite.
MAAEA	NALIPOITE $\mathrm{Li}_{2} \mathrm{NaPO}_{4}$
SERIES F	OLYMPITE, Orth/P2 ${ }_{1} \mathbf{2}_{1} \mathbf{2}_{1} . \mathrm{PO}_{4}$ tetrahedra and pairs of Li tetrahedra share corners to form ribbons // [100]; the ribbons are linked by adjacent P tetrahedra to form an open framework that is interlaced with a network of Na polyhedra joined by corners, edges and faces.
MAAFA	OLYMPITE $\quad \mathrm{Na}_{3} \mathrm{PO}_{4}$

TYPE B Structures with Medium-sized Cations

SERIES A	FARRINGTONITE, Mon/P2 $/$ /n. Structure consists of Mg linked by corners and edges to form a 3-dimensional fr	
MABAA	FARRINGTONITE	$\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
SERIES B	TRIPHYLITE SERIES. Orth/Pbnm. Olivine structure type octahedra forming zigzag chains // [001], which are con dimensional framework. The \mathbf{P} tetrahedra share edges	
MABBA	TRIPHYLITE	$\mathrm{Li}(\mathrm{Fe}, \mathrm{Mn}) \mathrm{PO}_{4}$
MABBB	LITHIOPHILITE	$\mathrm{Li}(\mathrm{Mn}, \mathrm{Fe}) \mathrm{PO}_{4}$
MABBC	FERRISICKLERITE	$(\mathrm{Li}, \square))(\mathrm{Fe}, \mathrm{Mn})\left[\mathrm{PO}_{4}\right]$
MABBD	SICKLERITE	$(\mathrm{Li}, \square))(\mathrm{Mn}, \mathrm{Fe})\left[\mathrm{PO}_{4}\right]$
MABBE	HETEROSITE	FePO_{4}
MABBF	PURPURITE	MnPO_{4}
MABBG	NATROPHILITE	NaMnPO_{4}
MABBH	SIMFERITE	$\mathrm{Li}(\mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn})_{2}\left(\mathrm{PO}_{4}\right)_{2}$
MABBI	BUCHWALDITE	$\mathrm{NaCa}\left(\mathrm{PO}_{4}\right)$
MABBJ	LITHIOPHOSPHATE	$\mathrm{Li}_{3} \mathrm{PO}_{4}$
MABBK	MARICITE	NaFePO_{4}
MABBL	KARENWEBBERITE	$\mathrm{Na}\left(\mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}\right) \mathrm{PO}_{4}$
MABBM	CZOCHRALSKIITE	$\mathrm{Na}_{4} \mathrm{Ca}_{3} \mathrm{Mg}\left(\mathrm{PO}_{4}\right)_{4}$
MABBN	BRIANITE	$\mathrm{Na}_{2} \mathrm{CaMg}\left(\mathrm{PO}_{4}\right)_{2}$

SARCOPSIDE, mon/P2 ${ }_{1} / \mathrm{a}$. Triphylite derivative. Structure consists of zigzag triphylite chains, every fourth octahedral site is vacant, which splits up the chains into trimers of edge-sharing octahedra // [101]; these are connected via corners and P groups to form a 3-dimensional framework.

MABCA
MABCB
MABCC

SERIES D

SARCOPSIDE

$$
\begin{aligned}
& (\mathrm{Fe}, \mathrm{Mn}, \mathrm{Ca})_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& (\mathrm{Mg}, \mathrm{Fe})_{3}\left(\mathrm{PO}_{4}\right)_{2} \\
& \left(\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right.
\end{aligned}
$$

GRAFTONITE SERIES mon/P2 ${ }_{1} / \mathrm{c}$. Structure consists of dimmers of edge-sharing M pentagonal dipyramids sharing corners with similar dimmers to form sheets // (100); edge-sharing M trigonal dipyramids form chains // [001]; these are linked into a framework by M square pyramids and \mathbf{P} tetrahedra. Two new minerals of the graftonite group, graftonite-(Mn), ideally M1MnM2,M3Fe2(PO4)2, and graftonite-(Ca), ideally M1CaM2,M3Fe2(PO4)2, were discovered in phosphate nodules of two beryl-columbite-phosphate pegmatites, respectively at Lutomia and Michałkowa in the Góry Sowie Block, Lower Silesia, SW Poland. Graftonite-(Mn) is pinkish brown, whereas graftonite-(Ca) shows more brownish coloration. Both minerals have a vitreous luster, a good cleavage. Graftonite-(Ca) was collected at Michałkowa, $50^{\circ} 45^{\prime} \mathrm{N}, 16^{\circ} 27^{\prime} \mathrm{E}$, in the middle part of the Góry Sowie Block, $\sim 70 \mathrm{~km}$ SW of Wrocław, on a small pegmatite dump, a relic of excavation in the 19th century as a source of quartz and feldspar. During this work, Websky (1868) found and described sarcopside (type locality, TL), associated with hureaulite, vivianite and an apatite-group mineral. The dump is located on the left site of the Dział Michałowski Range, on the right side of the Młynówka stream, about 100 m from the Zagórze Śląskie - Lubachów - Michałkowa - Pieszyce road. The original pegmatite vein, ~10-12 m in length and 2-4 m in thickness, with visible zoning (wall zone - graphic zone - blocky feldspar zone), was composed of albite, microcline, quartz, muscovite, biotite, schorl evolving to foitite, almandine, sillimanite, andalusite and phosphate minerals in nodules reaching a few centimeters in diameter (Łodziński and Sitarz, 2009). Graftonite-(Ca) was found in an outer zone of a small phosphate nodule ($\sim \mathbf{2 c m}$ in diameter) collected on the dump. The nodule was composed mainly of lamellar intergrowths of the primary magmatic phosphates: sarcopside and graftonite-(Mn), with minor triphylite oxidized topotactically to ferrisicklerite and heterosite. In this zone, the magmatic phosphates underwent intensive Na and Ca metasomatism and were replaced by wolfeite, alluaudite, maneckiite, fluor- and hydroxylapatite, in places forming fine-grained mosaics (Pieczka et al., 2017a).

To date, ~ 50 phosphate minerals has been identified in the pegmatite (Grochowina, 2016), with such rare species as maneckiite (TL), wicksite, willieite, ferrowillieite, qingheiite-(Fe), maghagendorfite, hagendorfite, ferrohagendorfite, johnsomervilleite, lazulite, gormanite, childrenite, souzalite and arrojadite-(KNa). Łodziński and Sitarz (2009) mentioned also the presence of qingheiite, rosemaryite and simferite in nodules of the pegmatite, but these phosphates have not yet been confirmed by chemical analysis or X-ray diffraction. Beusite-(Ca), ideally CaMn2+(PO4)2, is a new graftonite-group mineral from the Yellowknife pegmatite field, Northwest Territories, Canada. It occurs in a beryl-columbite-phosphate rare-element pegmatite where it is commonly intergrown with triphylitelithiophilite or sarcopside, and may form by exsolution from a high-temperature (Li, Ca)-rich graftonite-like parent phase. It occurs as pale-brown lamellae $0.1-1.5 \mathrm{~mm}$ wide in triphylite, and is pale brown with a vitreous lustre and a very pale-brown streak. It is brittle, has a Mohs hardness of 5, and the calculated density is $3.610 \mathrm{~g} / \mathrm{cm} 3$. Beusite-(Ca) is colourless in plane-polarized light, and is biaxial (+) with $\alpha=1.685(2), \beta=1.688(2), \gamma=1.700(5)$, and the optic axial angle is 46.0(5) ${ }^{\circ}$. It is nonpleochroic with $X\left|\mid b ; Y \wedge a=40.3^{\circ}\right.$ in β obtuse; $Z \wedge a=49.7^{\circ}$ in β acute. Beusite-(Ca) is monoclinic, has space group $P 21 / c, a=8.799(2), b=11.724(2), c=6.170(1) \AA, \beta=99.23(3)^{\circ}, V=628.3(1) \AA 3$ and Z = 4. Chemical analysis by electron microprobe gave P2O5 41.63, FeO 19.43, MnO 23.63, CaO 15.45, sum $100.14 \mathrm{wt} . \%$. The empirical formula was normalized on the basis of 8 anions pfu:
(Ca 0.94 Fe 0.92 Mn 1.13) $\mathbf{\Sigma 2 . 9 9}(\mathrm{PO} 4) 2.00$. The crystal structure was refined to an R 1 index of $\mathbf{1 . 5 5 \%}$. Beusite-(Ca) is a member of the graftonite group with Ca completely ordered at the [8]-coordinated M(1) site.
A classification and nomenclature scheme has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification for the minerals of the graftonite group. The crystal structures of these minerals have three distinct sites that are occupied by $\mathrm{Fe} 2+$, $\mathrm{Mn} 2+$ and $\mathrm{Ca} 2+$. These sites have coordination numbers [8], [5] and [6], and these differences lead to very strong order of $\mathrm{Fe} 2+$, Mn2+ and $\mathrm{Ca} 2+$ over these sites. As a result of this strong order, the following compositions have been identified as distinct species: graftonite: FeFe2(PO4)2; graftonite-(Ca): CaFe2(PO4)2; graftonite-(Mn): MnFe2(PO4)2; beusite: MnMn2(PO4)2; and beusite-(Ca): CaMn2(PO4)2.
Two new minerals of the graftonite group, graftonite-(Mn), ideally M(1)MnM(2),M(3)Fe2(PO4)2, and graftonite-(Ca), ideally $\mathrm{M}(1) \mathrm{CaM}(2), \mathrm{M}(3) \mathrm{Fe} 2(\mathrm{PO} 4) 2$, were discovered in phosphate nodules of two beryl-columbite-phosphate pegmatites at Lutomia and Michałkowa, respectively, in the Góry Sowie Block, Lower Silesia, southwest Poland. Graftonite-(Mn) is pinkish brown, whereas graftonite-(Ca) shows more brownish colouration. Both minerals have a vitreous lustre, a good cleavage observed along (010) and irregular fracture; both are transparent and neither of them is fluorescent. They are brittle and have a Mohs hardness of ~ 5. The minerals are non-pleochroic, colourless in all orientations, biaxial (+), with mean refractive indices $\alpha=1.710(2)$ and 1.690(2), $\beta=1.713(2)$ and 1.692(2), and $\gamma=1.725(2)$ and $1.710(5)$, respectively. With complete order of Ca at the $M(1)$ site, the formulae of the holotype crystals are
$\mathrm{M}(1)(\mathrm{Mn} 0.70 \mathrm{Ca} 0.30) \mathrm{M}(2), \mathrm{M}(3)(\mathrm{Fe} 1.34 \mathrm{Mn} 0.60 \mathrm{Mg} 0.06 \mathrm{Zn} 0.01) \Sigma 3(\mathrm{PO} 4) 2$ for graftonite-(Mn) and $\mathrm{M}(1)(\mathrm{Ca} 0.98 \mathrm{Mn} 0.02) \mathrm{M}(2), \mathrm{M}(3)(\mathrm{Fe} 1.38 \mathrm{Mn} 0.56 \mathrm{Mg} 0.05) \Sigma 3(\mathrm{PO} 4) 2$ for graftonite-(Ca). Both crystal chemistry and crystal-structure refinement (R1 = 2.34 and 1.63%, respectively) indicate that the $M(1)$ site is occupied dominantly by Mn in graftonite-(Mn) and by Ca in graftonite-(Ca), and the $\mathrm{M}(2)$ and M(3) sites are occupied by Fe2+ and Mn2+, with Fe2+ dominant over Mn2+ at the aggregate M(2) + $\mathbf{M}(3)$ sites. Graftonite-(Mn) and graftonite-(Ca) are isostructural with graftonite,
$\mathrm{M}(1) \mathrm{FeM}(2), \mathrm{M}(3) \mathrm{Fe} 2(\mathrm{PO} 4) 2$ (monoclinic system; space-group symmetry P21/c), with the unit-cell parameters $a=8.811(2) A, b=11.494(2) A, c=6.138(1) A, \beta=99.23(3)^{\circ}$ and $V=613.5(4) A 3$, and $a=$ 8.792(2) $\AA, b=11.743(2) \AA, c=6.169(1) A, \beta=99.35(3)^{\circ}$ and $V=628.5(1) \AA 3$, respectively. The densities calculated on the basis of molar weights and unit-cell volumes are $3.793 \mathrm{~g} / \mathrm{cm} 3$ for graftonite-(Mn) and $3.592 \mathrm{~g} / \mathrm{cm} 3$ for graftonite-(Ca). The eight strongest lines in powder X-ray diffraction patterns on the basis of single-crystal data are, respectively [d, Å, I (hkl)]: 2.874, 100, (230 + 040); 2.858, 79, (221); 3.506, 73, (130); 2.717, 79, (-311); 2.952, 55, (131); 2.916, 53, (-112); 2.899, 44, (300); 3.016, 35, (-102); and 3.654, 100, (130); 2.979, 85, (221); 3.014, 77, (230); 3.042, 76, (040 + -112); 2.834, 68, (-311); 3.097, 57, (131); 3.133, 56, (-102); 2.542, 30, (311). Both minerals are common primary phosphates in phosphate nodules, occurring as lamellar intergrowths with sarcopside \pm triphylite/lithiophilite, products of exsolution from a (Li, Ca)-rich graftonite-like parent phase crystallized at high temperature from P-bearing hydrosaline melts.

MABDA

MABDE

GRAFTONITE
BEUSITE
GRAFTONITE-(Ca)
GRAFTONITE-(Mn)
BEUSITE-(Ca)

$$
\begin{aligned}
& \mathrm{Fe}^{2+} \mathrm{Fe}^{2+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{2} \\
& \mathrm{Mn}^{2+} \mathrm{Mn}^{2+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{2} \\
& \mathrm{CaFe}^{2+}\left(\mathrm{PO}_{4}\right)_{2} \\
& \mathrm{MnFe}^{2+}\left(\mathrm{PO}_{4}\right)_{2} \\
& \mathrm{CaMn}^{2+}\left(\mathrm{PO}_{4}\right)_{2}
\end{aligned}
$$

SERIES E	XANTHIOSITE. mon $/$ P2 ${ }_{1} /$ a. Structure consists of chains of edge-sharing Ni octahedra sharing corners and edges with As tetrahedra to form slabs of cation-deficient olivine structure.
MABEA	XANTHIOSITE $\mathrm{Ni}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$
SERIES F	LAMMERITE, mon/P2 ${ }_{1} /$ a. Structure consists of zigzag chains // [100] of edge-sharing Cu octahedra which are connected by Cu dipyramids and As tetrahedra to form a framework with densely packed layers // (100). In the structure of lammerite-beta, three differently coordinated Cu-polyhedra form 6membered rings by sharing vertexes or edges. Those rings form layers // to (010), chich are double by joing through polyhedral Cu3 and As-tetrahedra. Those corrugated double layers are connected by As-tetrahedra into three-dimentional construction.
MABFA	LAMMERITE $\quad \mathrm{Cu}_{3}\left((\mathrm{As}, \mathrm{P}) \mathrm{O}_{4}\right)_{2}$
MABFB	LAMMERITE- $\beta \quad \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$
MABFC	BORISENKOITE $\mathrm{Cu}_{3}\left[(\mathrm{~V}, \mathrm{As})_{4}\right]_{2}$
SERIES G	STRANSKIITE, tric/P1. Structure consists of staggered chains // [010] of Cu tetragonal dipyramids and dimers of two edge-sharing Zn trigonal dipyramids are linked into a framework by As tetrahedra.
MABGA	STRANSKIITE $\quad \mathrm{Zn}_{2} \mathrm{Cu}\left(\mathrm{AsO}_{4}\right)_{2}$
MABGB	MCBIRNEYITE $\quad \mathrm{Cu}_{3}\left(\mathrm{VO}_{4}\right)_{2}$
SERIES H	LYONSITE, orth/Pmen. Structure consists of Cu octahedra sharing all six corners with V tetrahedra to form (3+3) pinwheels // (001); the pinwheels are connected into a framework by chains of edgesharing Fe octahedra and chains of edge-sharing Cu trigonal prisms. The structure of pseudolyonsite consists of chains of edge-sharing distorted ocahedra involving Cu2 running along the \mathbf{c} axis and connected to each other by distorted octahedral involving Cu1. The octahedral of both types contain Cu and subordinate Zn . The corrugated octahedral layers are connected to each other by VO_{4} tetrahedra. Both types of Cu octahedral are typically Jahn-Teller-distorted with four shorter and two longer CiOO bonds.
MABHA	LYONSITE $\quad \mathrm{Cu}_{3} \mathrm{Fe}_{4}\left(\mathrm{VO}_{4}\right)_{6}$
MABHB	PSEUDOLYSONITE $\quad \mathrm{Cu}^{2+} \mathrm{Cu}^{2+}{ }_{2}\left(\mathrm{VO}_{4}\right)_{2} \quad \mathrm{mon} / \mathrm{p} 2_{1} / \mathrm{c}$
SERIES I	ERICLAXMANITE, tric/P1. The structure is based on an interrupted framework built by edge- and corner-sharing Cu-centered, distorted tetragonal pyramids, trigonal bipyramids and octahedra.
MABIA	ERICLAXMANITE $\mathrm{Cu}_{4} \mathrm{O}\left(\mathrm{AsO}_{4}\right)_{2}$
SERIES J	KOZYREVSKITE, orth/Pnma. The structure is based on complicated ribbons of Cu-centered polyhedra running along the b axis. Each ribbon consists of two zigzag chains formed by edgesharing $\mathrm{Cu}(1)$-centered, distorted trigonal bipyramids and $\mathrm{Cu}(2)$-centered square pyramids. $\mathrm{Cu}(3)$ trigonal bipyramids link adjacent chains sharing edges with two $\mathrm{Cu}(2)$-centered polyhedra forming heteropolyhedral layers coplanar to (001) while As(2) tetrahedra link neighboring layers to form a three-dimensional quasi-framwork..
MABJA	KOZYREVSKITE $\mathrm{Cu}_{4} \mathrm{O}\left(\mathrm{AsO}_{4}\right)_{2}$
SERIES K	POPOVITE, tric/P1. The structure is based on (010) layers forming an interrupted framework. The layer consists of $\overline{\mathrm{Cu}(1) \mathrm{O}_{6} \text { octahedra with very strong Jahn-Teller distortion and } \mathrm{Cu}(2) \mathrm{O}_{5} \text { and } \mathrm{Cu}(3) \mathrm{O}_{5}, ~}$ polyhedra. The linkage between the layers is reinforced by isolated AsO_{4} tetrahedra. Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2013) Popovite, IMA 2013-060. CNMNC Newsletter No. 17, October 2013, page 3003; Mineralogical Magazine, 77, 2997- 3005.
MABKA	POPOVITE $\mathrm{Cu}_{5} \mathrm{O}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$

SERIES L MOLINELLOITE, tric/P1. Structure consists of.
MABLA
MOLINELLOITE

$$
\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH}) \mathrm{V}^{4+} \mathrm{O}\left(\mathrm{VO}_{4}\right)
$$

SERIES M ZUBKOVAITE, mon/C2.
MABMA
ZUBKOVAITE
$\mathrm{Cu}_{3} \mathrm{Ca}_{3}\left(\mathrm{AsO}_{4}\right)_{4}$

SERIES N. RIOSECOITE, tric/P1.
MABNA
RIOSECOITE
$\mathrm{Ca}_{2} \mathrm{Mg}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$

TYPE C Structures With Medium-sized and Large Cations.

SERIES A HOWARDEVANSITE, tric/P1. Structure consists of edge-sharing Fe octahedra and Cu trigonal dipyramids sharing corners with V tetrahedra to form wide ribbons // [001]; the ribbons are terminated laterally by chains, also // [001], of face- and edge-sharing Na polyhedra. The crystal structure of grigorievite and koksharovite are based on the pseudo-frameworks built by V tetrahedra, MiO_{6} octahedra and MiiO_{5} polyhedra. The Ca and Cu sites are located in tunnels.
The crystal structure of ziminaite, solved from single-crystal data ($\mathrm{R} 1=0.085$), is based upon heteropolyhedral framework built by VO_{4} tetrahedra and Fe^{3+-} centred octahedra and five-fold polyhedra.

MACAA	HOWARDEVANSITE	$\mathrm{NaCuFe}_{2}\left(\mathrm{VO}_{4}\right)_{3}$
MACAB	GRIGORIEVITE	$\mathrm{Cu}_{3} \mathrm{Fe}^{3+}{ }_{2} \mathrm{Al}_{2}\left(\mathrm{VO}_{4}\right)_{6}$
MACAC	KOKSHAROVITE	$\mathrm{CaMgFe}^{3+}\left(\mathrm{VO}_{4}\right)_{6}$
MACAD	ZIMINAITE	$\mathrm{Fe}^{3+}{ }_{6}\left(\mathrm{VO}_{4}\right)_{6}$

SERIES B HAGENDORFITE SERIES, mon/l2/a. Structure consists of stepped chains of edge-sharing octahedra // [101] sharing corners with P or As tetrahedra to give pleated sheets // (010); chains of M polyhedra // [001] interlink the sheets.

MACBA
MACBB
HAGENDORFITE

MACBC
MACBD
ALLUAUDITE

MACBE
MACBF
ARSENIOPLEITE
CARYINITE

MACBF
FERROALLUAUDITE

MACBG
MACBH
MACBI
MACBJ
HAGENDORFITE
MAGHAGENDORFITE
VARULITE
BRADACZEKITE

MACBK
MACBL
O'DANIELITE

MACBM
MACBN
MACBO
JOHILLERITE

MACBP
MACBQ
MACBR
MACBS
MACBT
NICKENICHITE
YAZGANITE
GROATITE
MANITOBAITE
hatertite
CANUTITE
ZINCOBRADACZEKITE
BADALOVITE
MAGNESIOCANUTITE
$\mathrm{NaCaMn}(\mathrm{Fe}, \mathrm{Fe}, \mathrm{Mg})_{2}\left[\mathrm{PO}_{4}\right]_{3}$
$\mathrm{NaCaFe}(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Fe}, \mathrm{Mg})_{2}\left[\mathrm{PO}_{4}\right]_{3}$
$\mathrm{NaCaMn}(\mathrm{Mn}, \mathrm{Mg})_{2}\left[\mathrm{AsO}_{4}\right]_{3}$
$\mathrm{Na}(\mathrm{Ca}, \mathrm{Pb})(\mathrm{Ca}, \mathrm{Mn})(\mathrm{Mn}, \mathrm{Mg})_{2}\left[\mathrm{AsO}_{4}\right]_{3}$
$\mathrm{NaCaFe}(\mathrm{Fe}, \mathrm{Mn}, \mathrm{Fe})_{2}\left[\mathrm{PO}_{4}\right]_{3}$
$\mathrm{NaCaMn}(\mathrm{Fe}, \mathrm{Fe}, \mathrm{Mg})_{2}\left[\mathrm{PO}_{4}\right]_{3}$
$\mathrm{NaMnMg}(\mathrm{Fe}, \mathrm{Fe})_{2}\left[\mathrm{PO}_{4}\right]_{3}$
$(\mathrm{Na}, \mathrm{Ca}) \mathrm{Mn}(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Fe})_{2}\left[\mathrm{PO}_{4}\right]_{3}$
$\mathrm{NaCu}_{4}\left(\mathrm{AsO}_{4}\right)_{3}$
$\mathrm{Na}(\mathrm{Mg}, \mathrm{Zn})_{3} \mathrm{Cu}\left(\mathrm{AsO}_{4}\right)_{3}$
$\mathrm{Na}(\mathrm{Zn}, \mathrm{Mg})_{3} \mathrm{H}_{2}\left(\mathrm{AsO}_{4}\right)_{3}$
$\mathrm{Na}_{0.8} \mathrm{Ca}_{0.4} \mathrm{Cu}_{0.4}(\mathrm{Mg}, \mathrm{Fe})_{2}\left(\mathrm{AsO}_{4}\right)_{3}$
$\mathrm{NaFe}^{3+}{ }_{2}(\mathrm{Mg}, \mathrm{Mn})\left(\mathrm{AsO}_{4}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NaCaMn} 2\left(\mathrm{PO}_{4}\right)\left[\mathrm{PO}_{3} \mathrm{OH}\right]_{2}$
$\mathrm{Na}_{16} \mathrm{Mn}^{2+}{ }_{25} \mathrm{Al}_{8}\left(\mathrm{PO}_{4}\right)_{30}$
$\mathrm{Na}_{2}(\mathrm{Ca}, \mathrm{Na})\left(\mathrm{Fe}^{3+}, \mathrm{Cu}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{3}$
$\mathrm{NaMn}_{3}\left[\mathrm{AsO}_{4}\right]_{2}\left[\mathrm{AsO}_{2}(\mathrm{OH})_{2}\right]$
$\mathrm{NaZn}_{2} \mathrm{Cu}_{2}\left(\mathrm{AsO}_{4}\right)_{3}$
$\mathrm{Na}_{2} \mathrm{Mg}_{2} \mathrm{Fe}\left(\mathrm{AsO}_{4}\right)_{3}$
$\mathrm{NaMnMg}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{2}(\mathrm{OH})_{2}\right)$

MACBU	CALCIOJOHILLERITE	$\mathrm{NaCaMg}_{3}\left(\mathrm{AsO}_{4}\right)_{3}$
MACBV	MAGNESIOHATERTITE	$(\mathrm{Na}, \mathrm{Ca})_{2} \mathrm{Ca}(\mathrm{Mg}, \mathrm{Fe})_{2}\left(\mathrm{AsO}_{4}\right)_{3}$
MACBW	KHRENOVITE	$\mathrm{Na}_{3} \mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{AsO}_{4}\right)_{3}$
MACBX	PARABERZELIITE	$\mathrm{NaCa}_{2} \mathrm{Mg}_{2}\left(\mathrm{AsO}_{4}\right)_{3}$
MACBY	CAMANCHACITE	$\mathrm{NaCaMg}_{2}\left[\mathrm{AsO}_{4}\right]\left[\mathrm{AsO}_{3}(\mathrm{OH})_{2}\right.$

SERIES C WYLLIEITE SERIES, mon $/ \mathrm{P}_{2} / \mathrm{n}$. Structure consists of stepped chains of edge-sharing octahedra with a topology identical to those of the hagendorfite group.

MACCA	FERROWYLLIEITE	$(\mathrm{Na}, \mathrm{Ca}, \mathrm{Mn})(\mathrm{Fe}, \mathrm{Mn})(\mathrm{Fe}, \mathrm{Fe}, \mathrm{Mg}) \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{3}$
MACCB	WYLLIEITE	$\mathrm{Na}_{7} \mathrm{Fe}_{2} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{P}_{1} / \mathrm{n}$
MACCC	ROSEMARYITE	$(\mathrm{Na}, \mathrm{Ca}, \mathrm{Mn})(\mathrm{Mn}, \mathrm{Fe})(\mathrm{Fe}, \mathrm{Fe}, \mathrm{Mg}) \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{3}$
MACCD	BOBFERGUSONITE	$\mathrm{Na}_{2} \mathrm{Mn}_{5} \mathrm{FeAl}\left(\mathrm{PO}_{4}\right)_{6} \quad \mathrm{P}_{1} / \mathrm{n}$
MACCE	QINGHEIITE	$\mathrm{Na}_{2} \mathrm{NaMn}_{2} \mathrm{Mg}_{2}(\mathrm{Al}, \mathrm{Fe})_{2}\left(\mathrm{PO}_{4}\right)_{6}$
MACCF	FERROROSEMARYITE	$(\mathrm{Na}, \mathrm{Ca}, \mathrm{Mn})(\mathrm{Fe}, \mathrm{Mn})(\mathrm{Fe}, \mathrm{Fe}, \mathrm{Mg}) \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{3}$
MACCG	QINGHEIITE-(Fe^{2+})	$\mathrm{Na}_{2} \mathrm{Fe}^{2+} \mathrm{MgAl}\left(\mathrm{PO}_{4}\right)_{3}$
MACCH	ZHANGHUIFENITE	$\mathrm{Na}_{3} \mathrm{Mn}^{2+}{ }_{4} \mathrm{Mg}_{2} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{6}$
MACCI	FUPINGQIUITE (D)=varulite	$\left(\mathrm{Na}, \mathrm{Mn}^{2+}\right)_{2} \mathrm{Fe}^{3+}\left(\mathrm{PO}_{4}\right)_{3}$
MACCJ	FERROBOBFERGUSONITE	$\mathrm{Na}_{2} \mathrm{Fe}^{2+}{ }_{5} \mathrm{Fe}^{3+} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{6}$

SERIES D BERZELIITE SERIES iso/la3d. Structure is of the garnet type. The structure consists of cornersharing alternating YO_{6} octahedra and Si tetrahedral forming chains // to the three cube edges of the unit cell, resulting in a framework with pseudo-cubic cavities that accommodate the X atoms. Each pseudo-cube shares edges with two tetrahedral, four octahedra and another four pseudo-cubes

MACDA
MACDB

BERZELIITE
MANGANBERZELIITE
PALENZONAITE
SCHAFERITE

$$
\begin{aligned}
& \left(\mathrm{Ca}, \mathrm{Na}_{2}\right)_{3}(\mathrm{Mg}, \mathrm{Mn})_{2}\left(\mathrm{AsO}_{4}\right)_{3} \\
& \left(\mathrm{Ca}, \mathrm{Na}_{2}\right)_{3}(\mathrm{Mn}, \mathrm{Mg})_{2}\left(\mathrm{AsO}_{4}\right)_{3} \\
& \left(\mathrm{Ca}_{2} \mathrm{Na}\right) \mathrm{Mn}_{2}\left(\mathrm{VO}_{4}\right)_{3} \\
& \left(\mathrm{Ca}_{2} \mathrm{Na}\right) \mathrm{Mg}_{2}\left(\mathrm{VO}_{4}\right)_{3}
\end{aligned}
$$

SERIES E ACHYROPHANITE, orth/P2221.
MACEA ACHYROPHANITE $\quad(\mathrm{K}, \mathrm{Na})_{3}(\mathrm{Fe}, \mathrm{Ti}, \mathrm{Al}, \mathrm{Mg})_{5} \mathrm{O}_{2}\left(\mathrm{AsO}_{4}\right)_{5}$

SERIES F VITUSITE, orth/Pc2 ${ }_{1}$ b. Structure consists of a column of face-sharing K-Na polyhedra // [0001], which are connected by sulfate tetrahedra and by K ions to form a framework. In vitusite M octahedra and $(3+3)$ phosphate tetrahedra form pinwheels arranged in rods // [001]. Glaserite-like structure.

MACFA	VITUSITE-(Ce)	$\mathrm{Na}_{3}(\mathrm{Ce}, \mathrm{La}, \mathrm{Nd})\left(\mathrm{PO}_{4}\right)_{2}$
MACFB	DYRNAESITE-(La)	$\mathrm{Na}_{8} \mathrm{Ce}^{4+}(\mathrm{La}, \mathrm{REE})_{2}\left(\mathrm{PO}_{4}\right)_{6}$

SERIES G OLGITE SERIES, hex/P3. Structure consists of sheets of edge-sharing M polyhedra and P tetrahedra alternating with layers of M polyhedra // (0001). Three kinds of rods // (0001) connect the layers; facesharing M polyhedra and Na octahedra; edge- and corner-sharing M polyhedra and P tetrahedra; M octahedra and P tetrahedra. Glaserite-related structure.

MACGA	OLGITE-(Sr)	$\mathrm{Na}(\mathrm{Sr}, \mathrm{Ba}) \mathrm{PO}_{4}$
MACGB	OLGITE-(Ba)	$\mathrm{Na}(\mathrm{Ba}, \mathrm{Sr}) \mathrm{PO}_{4}$

SERIES H WHITLOCKITE SERIES, trig/R3c. The structure consists of edge- and face-sharing Ca polyhedra, Mg octahedra and P tetrahedra forming chains // [0001]; the chains are linked by corner- and edgesharing \mathbf{P} tetrahedra. This structure is equal to the classic $\mathrm{Ba}_{3} \mathrm{P}_{2} \mathrm{O}_{8}$ structure. Cerite belongs here. The recent structure refinement of merrillite shows it has a structural unit consisting of a $\left[(\mathrm{Mg}, \mathrm{Fe})\left(\mathrm{PO}_{4}\right)_{6}\right]^{16-}$ complex anion that forms a "bracelet-and-pinwheel" arrangement. This arrangement differs from that found terrestrial whitlockite, bobdownsite or lunar REE-rich merrillite. Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., Varela, M.-E., lizuka, Y. (2019): New minerals tsangpoite $\mathrm{Ca5}(\mathrm{PO} 4) 2(\mathrm{SiO} 4)$ and matyhite $\mathrm{Ca} 9(\mathrm{Ca} 0.5 \square 0.5) \mathrm{Fe}(\mathrm{PO} 4) 7$ from angrite D'Orbigny. Mineralogical Magazine, 83, 293-313.

Abatract:

Tsangpoite, ideally $\mathrm{Ca5}(\mathrm{PO} 4) 2(\mathrm{SiO} 4)$, the hexagonal polymorph of silicocarnotite, and matyhite, ideally $\mathrm{Ca} 9(\mathrm{Ca} 0.5 \square 0.5) \mathrm{Fe}(\mathrm{PO}) 7$, the Fe -analogue of Ca -merrillite, were identified from the D'Orbigny angrite meteorite by electron probe microanalysis, electron microscopy and micro-Raman spectroscopy. On the basis of electron diffraction, the symmetry of tsangpoite was shown to be hexagonal, P63/m or P63, with $a=9.489(4) \AA, c=6.991(6) A, V=545.1(6) A 3$ and $Z=2$ for 12 oxygen atoms per formula unit, and that of matyhite was shown to be trigonal, R3c, with $a=10.456$ (7) $\dot{A}, \mathrm{c}=$ $37.408(34) \AA, V=3541.6$ (4.8) $\AA 3$ and $Z=6$ for 28 oxygen atoms per formula unit. On the basis of their constant association with the grain-boundary assemblage: Fe sulfide + ulvöspinel + Al-Ti-bearing hedenbergite + fayalite-kirschsteinite intergrowth, the formation of tsangpoite and matyhite, along with kuratite (the Fe-analogue of rhönite), can be readily rationalised as crystallisation from residue magmas at the final stage of the D'Orbigny meteorite formation. Alternatively, the close petrographic relations between tsangpoite/matyhite and the resorbed Fe sulfide rimmed by fayalite + kirschsteinite symplectite, such as the nucleation of tsangpoite in association with magnetite \pm other phases within Fe sulfide and the common outward growth of needle-like tsangpoite or plate-like matyhite from the fayalite-kirschsteinite symplectic rim of Fe sulfide into hedenbergite, infer that these new minerals and the grain-boundary assemblage might represent metasomatic products resulting from reactions between an intruding metasomatic agent and the porous olivine-plagioclase plate + fayalite-kirschsteinite overgrowth + augite + Fe sulfide aggregates. Still further thermochemical and kinetics evidence is required to clarify the exact formation mechanisms/conditions of the euhedral tsangpoite, matyhite and kuratite at the grain boundary of the D'Orbigny angrite.

MACHA
MACHB
MACHC
MACHD
MACHE
MACHF
MACHG
MACHH
MACHI

WHITLOCKITE
STRONTIOWHITLOCKITE
TUITE
FERROMERRILLITE
MERRILLITE
open
WOPMAYITE
HEDEGAARDITE
MATYHITE

$$
\begin{aligned}
& \mathrm{Ca}_{9} \mathrm{Mg}\left(\mathrm{PO}_{3} \mathrm{OH}\right)\left(\mathrm{PO}_{4}\right)_{6} \\
& \mathrm{Sr}_{9} \mathrm{Mg}\left(\mathrm{PO}_{3} \mathrm{OH}\right)\left(\mathrm{PO}_{4}\right)_{6} \\
& \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad \text { trig/R3}{ }_{2} \\
& \mathrm{Ca}_{9} \mathrm{NaFe}\left(\mathrm{PO}_{4}\right)_{7} \\
& (\mathrm{Ca}, \mathrm{Y}, \mathrm{REE})_{9} \mathrm{NaMg}_{2}\left(\mathrm{PO}_{4}\right)_{7} \\
& \\
& \mathrm{Ca}_{6} \mathrm{Na}_{3} \mathrm{Mn}\left(\mathrm{PO}_{4}\right)_{3}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{4} \\
& (\mathrm{Ca}, \mathrm{Na})_{9}(\mathrm{Ca}, \mathrm{Na}) \mathrm{Mg}_{\left(\mathrm{PO}_{4}\right)_{6}\left(\mathrm{PO}_{3} \mathrm{OH}\right)}^{\mathrm{Ca}_{18}(\mathrm{Ca}, \square)_{2} \mathrm{Fe}^{2+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{14}}
\end{aligned}
$$

SERIES I FILLOWITE SERIES, trig/R3. Structure consists of slabs // (0001) composed of (3+3) pinwheels of $M^{[6]}$ octahedra surrounded by Ca polyhedra and connected by P tetrahedra alternating with complex slabs of $M^{[5]}, M^{[6]}$ and $M^{[7]}$ polyhedra linked by P tetrahedra. Related to the glaserite structure.

MACIA
MACIB
MACIC
MACID
MACIE
MACIF

FILLOWITE
JOHNSOMERVILLEITE
CHLADNIITE
GALILEIITE
STORNESITE-(Y)
XENOPHYLLITE

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{Ca}(\mathrm{Mn}, \mathrm{Fe})_{7}\left(\mathrm{PO}_{4}\right)_{6} \\
& \mathrm{Na}_{2} \mathrm{Ca}(\mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn})_{7}\left(\mathrm{PO}_{4}\right)_{6} \\
& \mathrm{Na}_{2} \mathrm{CaMg}_{7}\left(\mathrm{PO}_{4}\right)_{6} \\
& (\mathrm{Na}, \mathrm{~K})_{2}(\mathrm{Fe}, \mathrm{Mn}, \mathrm{Cr})_{8}\left(\mathrm{PO}_{4}\right)_{6} \\
& (\mathrm{Y}, \mathrm{Ca}) \mathrm{Na}_{6}(\mathrm{Ca}, \mathrm{Na})_{8}(\mathrm{Mg}, \mathrm{Fe})_{43}\left(\mathrm{PO}_{4}\right)_{36} \\
& \mathrm{Na}_{4} \mathrm{Fe}_{7}\left(\mathrm{PO}_{4}\right)_{6}
\end{aligned}
$$

SERIES J KOSNARITE, trig/R3c. Structure consists of (3+3) pinwheels of Zr octahedra surrounded by 6 phosphate tetrahedra. The pinwheels are joined by the phosphate tetrahedra to form a 3dimensional $\mathrm{Zr}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ network with K atoms in the cavities.

MACJA	KOSNARITE $\mathrm{KZr}_{2}\left(\mathrm{PO}_{4}\right)_{3}$
SERIES K	PANETHITE, mon/P2 ${ }_{1} / \mathbf{n}$. Structure not known. Fuchs, L. H., Olsen, E. and Henderson, E. P. (1967): Occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochim. Cosmochim. Acta: 31: 1711-1719. American Mineralogist (1968): 53: 509.
MACKA	PANETHITE $\quad(\mathrm{Na}, \mathrm{Ca}, \mathrm{K})_{2}(\mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn})_{2}\left(\mathrm{PO}_{4}\right)_{2}$
SERIES L	STANFIELDITE, mon/P2/c. No structure known. Fuchs, L.H. (1967), Stanfieldite, a new phosphate mineral from stony iron meteorites. Science. American Mineralogist (1968): 53: 508.
MACLA	STANFIELDITE $\quad \mathrm{Ca}_{4}(\mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn})_{5}\left(\mathrm{PO}_{4}\right)_{6}$
SERIES M	STAROVAITE, tri/P1. No structure description given. Pekov, I.V., Zelenski, M.E., Yapaskurt, V.O., Polekhovsky, Y.S. and Murashko, M.N. (2013): Starovaite, KCu5O(VO4)3, a new mineral from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. European Journal of Mineralogy, 25, 91-96.
MACMA	STAROVAITE $\mathrm{KCu}_{5} \mathrm{O}\left(\mathrm{VO}_{4}\right)_{3}$
SERIES N	WRIGHTITE, orth/Pnma. Wrightite K2AI2O(AsO4)2 is a new mineral species. The specimen was found in 1983 at a fumarole on the Second cinder cone of the Great fissure Tolbachik eruption. Wrightite light yellow aggregates consist of transparent tabular crystals with the average size of $0.05 \times 0.03 \times 0.005 \mathrm{~mm} 3$. Space group Pnma, $a=8.230(5), b=5.555(4), c=17.584(1) \AA ̊, V=803.9(6) \AA$ (3 , $Z=4$, powder data. The empirical formula is (K1.69Na0.38) $\boldsymbol{\Sigma 2 . 0 7}$ (Al1.80Fe0.24) $\mathbf{\Sigma 2 . 0 4 A s} 1.9609$. Crystal structure $(R=0.043)$ consists of $\mathrm{Al2O}(A s O 4) 2$ layers in the ab plane with clusters of edge-sharing AIO6 octahedra. Each layer contains two independent isolated AsO4 tetrahedra and two AIO6 octahedra. AIO6 octahedra are linked by edges, forming zigzag chains along the b-axis inside the Al-As layer. Eight- and six-coordinated K atoms are located in the interlayer space between AI2O(AsO4)2 layers. The mineral is biaxial (-), $\alpha=1.679(2), \beta=1.685(2), \mathrm{y}$ (calc.) $=1.687 ; 2 \mathrm{~V}$ (meas.) $=$ are: 36-8.77-002; 17-4.458-111; 19-4.010-201,013; 19-3.875-104; 100-2.972-015. The mineral was named in honour of Adrian Carl Wright, Emeritus Professor at the University of Reading, UK.
MACNA	WRIGHTITE $\mathrm{K}_{2} \mathrm{Al}_{2} \mathrm{O}\left(\mathrm{AsO}_{4}\right)_{2}$
SERIES 0	YURMARINITE, trig/R3.The structure is based on a 3D heteropolyhedral framework formed by $\mathbf{M}_{4} \mathrm{O}_{18}$ clusters linked with AsO_{4} tetraheda. Na atoms occupy two octahedrally coordinated sites in the voids of the framework.
MACOA	YURMARINITE $\quad \mathrm{Na}_{7}(\mathrm{Fe}, \mathrm{Mg}, \mathrm{Cu})_{4}\left(\mathrm{AsO}_{4}\right)_{6}$
MACOB	ANATOLYITE $\quad \mathrm{Na}_{6}(\mathrm{Ca}, \mathrm{Na})\left(\mathrm{Mg}, \mathrm{Fe}^{3+}\right)_{3} \mathrm{Al}\left(\mathrm{AsO}_{4}\right)_{6}$
SERIES P	IWATEITE, trig/Pㄹ. Structure consists of tetrahedral and octahedral sheets linked through the corner oxygen and orming a layered structure. There is one layer-embedded site occupied by Na and one 2
MACPA	IWATEITE $\quad \mathrm{Na}_{2} \mathrm{BaMn}\left(\mathrm{PO}_{4}\right)_{2}$
SERIES Q	MORASKOITE, orth/Pben. The moraskoite structure is similar to that of its synthetic analogue. The structure consists of $\left(\mathrm{FNa}_{4} \mathrm{Mg}_{2}\right)^{7+}$ octahedra that share faces to produce $\left[\mathrm{FNa}_{2} \mathrm{Mg}\right]^{3+}$ chains // to the a axis with phosphate ions located beween them. Karwowski, Ł., Kusz, J., Muszyński, A., Kryza, R., Sitarz, M., Galuskin, E.V. (2015): Moraskoite, Na2Mg(PO4)F, a new mineral from the Morasko IAB-MG iron meteorite (Poland). Mineralogical Magazine, 79, 387-398.
MACQA	MORASKOITE $\quad \mathrm{Na}_{2} \mathrm{Mg}\left(\mathrm{PO}_{4}\right) \mathrm{F}$
SERIES R	SHCHUROVSKYITE, mon/C2. Structure consists on a quasi-framework consisting of AsOtetrahedra and polyhedra centred by Cu in shchurovskyite or by Cu and Al in dmisokolovite. K and Ca are

located in channels of the quasi-framework. Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2013) Shchurovskyite, IMA 2013-078. CNMNC Newsletter No. 18, December 2013, page 3253; Mineralogical Magazine, 77, 3249-3258.
MACRA SHCHUROVSKYITE $\quad \mathrm{K}_{2} \mathrm{CaCu}_{6} \mathrm{O}_{2}\left(\mathrm{AsO}_{4}\right)_{4}$

SERIES S DMISOKOLOVITE, mon/C2/c. The structure of dmisokolovie is closely related to that of shchurovskyite. Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2013) Dmisokolovite, IMA 2013-079. CNMNC Newsletter No. 18, December 2013, page 3253; Mineralogical Magazine, 77, 3249-3258.

MACSA DMISOKOLOVITE $\quad \mathrm{K}_{3} \mathrm{Cu}_{5} \mathrm{AlO}_{2}\left(\mathrm{AsO}_{4}\right)_{4}$

SERIES T PHARMAZINCITE, hex, Pb_{3}. The structure has a structure based upon a tetrahedral tridymite-type $\left\{\mathrm{ZnAsO}_{4}\right\}^{\text {f }}$ framework. It is isostructural with megakalsilite. Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2014) Pharmazincite, IMA 2014-015. CNMNC Newsletter No. 21, August 2014, page 798; Mineralogical Magazine, 78, 797-804.
MACTA PHARMAZINCITE KZn(AsO

SERIES U KATIARSITE, orth/Pna2 ${ }_{1}$. The structure is based on undulating chains of corner-connected Ticentered octahedra. These chains are cross-linked via isolated As tetrahedra, forming a threedimensional framework. K ions are located in channels of the framework Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2014) Katiarsite, IMA 2014-025. CNMNC Newsletter No. 21, August 2014, page 800; Mineralogical Magazine, 78, 797-804.

MACUA KATIARSITE KTiO(AsO4)

SERIES V MELANARSITE, mon/C2/c. The structure is based upon a heteropolyheral pseudo-framework built by distorted $\mathrm{Cu}(1-3) \mathrm{O}_{6}$ and $(\mathrm{Fe}, \mathrm{Cu}) \mathrm{O}_{6}$ octahedra and $\mathrm{As}(1-3) \mathrm{O}_{4}$ tetrahedra two crysallographically independent K ations are located in the tunnels and voids of the framework centering eight- and seven-fold polyhedra. Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Y.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Y. (2014) Melanarsite, IMA 2014-048. CNMNC Newsletter No. 22, October 2014, page 1244; Mineralogical Magazine, 78, 1241-1248.

MACVA MELANARSITE $\quad \mathrm{K}_{3} \mathrm{Cu}_{7} \mathrm{FeO}_{4}\left(\mathrm{AsO}_{4}\right)_{4}$

SERIES W EDTOLLITE, tric/P1.
MACWA
MACWB ALUMOEDTOLLITE

$$
\begin{aligned}
& \mathrm{K}_{2} \mathrm{NaCu}_{5} \mathrm{Fe}^{3+} \mathrm{O}_{2}\left(\mathrm{AsO}_{4}\right)_{4} \\
& \mathrm{~K}_{2} \mathrm{NaCu}_{5} \mathrm{AlO}_{2}\left(\mathrm{AsO}_{4}\right)_{4}
\end{aligned}
$$

SERIES X OZEROVAITE, orth/Cmca. The new mineral species ozerovaite was found in the fumarole of the second cinder cone of the Great Tolbachik Fissure Eruption. The colour of ozerovaite varies from colourless to pale yellow. It is insoluble in water. The mineral occurs as tabular crystals, 0.04×0.02 $\times 0.004 \mathrm{~mm} 3$ average size; with aggregates of $0.02-0.3 \mathrm{~mm}$. The empirical formula calculated on the basis of 16 O apfu is (Na 1.82 K 1.08) $\sum 2.90(\mathrm{Al} 2.62 \mathrm{Fe} 0.32 \mathrm{Cu} 0.12 \mathrm{Zn} 0.02) \sum 3.08(\mathrm{As} 3.95 \mathrm{P} 0.07) \Sigma 4.02 \mathrm{O16}$, and the idealised formula is $\mathrm{Na} 2 \mathrm{KAl3}(\mathrm{AsO4}) 4$. Ozerovaite is orthorhombic: Cmca, $a=10.615(2), \mathrm{b}=$ 20.937(3), $c=6.393(1) \AA \AA, V=1420.9(3) \AA 3, Z=4$. The crystal structure $(R 1=0.031)$ is constructed of AIO6 octahedra and AsO4 tetrahedra, linked by the corners and edges. Adjacent layers are held together by six- and four-coordinated Na and six-coordinated K polyhedra. The eight strongest diagnostic lines of the X-ray powder diffraction pattern are (I, d in Å, hkl]: 44, 10.37, 020; 47, 5.47, 200; 47, 4.84, 220; 17, 3.76, 240; 26, 3.07, 061; 83, 2.922, 260; 100, 2.824, 202; and 71, 2.735, 400. Ozerovaite is biaxial, optically negative, α (calc.) $=1.645, \beta=1.667(2), y=1.674(2)(589 \mathrm{~nm}), 2 \mathrm{~V}$ (meas.) $=58(10)^{\circ}$. Associated minerals are ponomarevite, piypite, dolerophanite, euchlorine, sylvite, lammerite, johillerite, urusovite, bradaczekite, filatovite, hatertite, hematite, tenorite and wrightite. The mineral is named in honour of the Russian scholar Dr. Nina Aleksandrovna Ozerova (19302012), for her contributions to geochemistry, geology, metallogeny, ecology and the ecogeochemistry of mercury.

MACXA
$\mathrm{Na}_{2} \mathrm{KAl}_{3}\left(\mathrm{AsO}_{4}\right)_{4}$

MADED	WAKEFIELDITE-(Ce)	$(\mathrm{Ce}, \mathrm{Pb} . \mathrm{Pb}) \mathrm{VO}_{4}$
MADEE	DREYERITE	BiVO_{4}
MADEF	PRETULITE	ScPO_{4}
MADEG	XENOTIME-(Yb)	YbPO_{4}
MADEH	CLINOBISVANITE	${\mathrm{Bi}\left(\mathrm{VO}_{4}\right)}_{\text {MADEI }}^{\text {MADEJ }}$
WAKEFIELDITE-(La)	LaVO_{4}	
WAKEFIELDITE-(Nd)	NdVO_{4}	

SERIES F	XIMENGITE-PUCHERITE SERIES, orth/Pnca. The structure consists of BiO_{8} polyhedra and \mathbf{P} tetrahedra sharing edges to form chains // [0001]; the chains are cross-linked to 4 neighboring chains by sharing corners, creating large channels // [0001]; the chains are similar to those in monazite. In pucherite edge-sharing BiO_{8} polyhedra form zigzag chains // [100], and these, by corner-sharing, form sheets // (001); the V tetrahedra share one edge and two corners with the Bi polyhedra.		
MADFA	PUCHERITE	BiVO_{4}	
MADFB	XIMENGITE	$\mathrm{Bi}\left[\mathrm{PO}_{4}\right]$	trig/P3, 21
SERIES G	MONAZITE SERIES, mon/P2 $/$ /n. Structure consists of linear chains // [001] of alternating edgesharing REE polyhedra and P tetrahedra which are cross-linked by zigzag chains of edge-sharing REE polyhedra // [100].		
MADGA	MONAZITE-(Ce)	(Ce,La)P	
MADGB	MONAZITE-(La)	(La,Ce)P	
MADGC	MONAZITE-(Nd)	(Nd, Ce)	
MADGD	MONAZITE-(Sm)	SmPO_{4}	
MADGE	ROOSEVELTITE	BiAsO_{4}	
MADGF	CHERALITE	($\mathrm{Ca}, \mathrm{REE}$) $\left(\mathrm{PO}_{4}, \mathrm{SiO}_{4}\right)_{2}$
MADGG	GASPARITE-(Ce)	($\mathrm{Ce}, \mathrm{La}, \mathrm{N}$	
MADGH	GASPARITE-(La)	$\mathrm{La}\left(\mathrm{AsO}_{4}\right)$	

SERIES H SCHEELITE SERIES, tetr/14 $/ \mathrm{a}$. The structure is a non-layered structure, and is formed by isolated W tetrahedra separated by Ca atoms, each of which is bonded to 8 oxygen atoms forming a dodecahedron. It is a distortion derivative of the zircon structure. The structure of tillmannsite contains isolated tetrahedra ($\mathrm{V}, \mathrm{As})_{\mathrm{O}_{4}}$ and tetrahedral clusters $\left(\mathrm{Ag}_{3} \mathrm{Hg}\right)$ fomed by metallic atoms. Each (Ag, Hg) metallic atom is coordinated by 3 metallic neighbors and by 3 oxygens.

MADHA
TETRAROOSEVELTITE BiAsO_{4}
MADHB \quad TILLMANNSITE $\quad\left(\mathrm{Ag}_{3} \mathrm{Hg}\right)(\mathrm{V}, \mathrm{As}) \mathrm{O}_{4} \quad$ tetr/l 4 (related to scheelite ?)

SERIES I CHURSINITE, mon/P2 ${ }_{1} / \mathrm{c}$. Structure consists of linear $\mathbf{O}-\mathrm{Hg}-\mathrm{Hg}-\mathrm{O}$ groups sharing O atoms with arsenate tetrahedra to form chains // [101]; three \mathbf{O} atoms of the tetrahedra are bonded along the chains, and one O atom links the chains along [010]. Forming puckered layers // (101); there is weak bonding between the layers.

MADIA CHURSINITE $\quad\left(\mathrm{Hg}^{1+}\right)_{3}\left(\mathrm{AsO}_{4}\right)$

SERIES J GURIMITE, trig/R3. Galuskina, I.O., Vapnik, Y., Prusik, K., Dzierz anowski, P., Murashko, M. and Galuskin, E.V. (2013) Gurimite, IMA 2013-032. CNMNC Newsletter No. 16, August 2013, page 2708; Mineralogical Magazine, 77, 2695- 2709.

MADJA
GURIMITE
$\mathrm{Ba}_{3}\left(\mathrm{VO}_{4}\right)_{2}$

GROUP B Phosphates with Additional Anions, But Without Water.

TYPE A Structures With Small and Medium-sized Cations.

SERIES A	VAYRYNENITE, mon $/ \mathrm{P}_{1} / \mathrm{a}$. Euclase structure type. Structure based on zigzag chains of 3- membered rings of $\mathrm{BeO}_{2}(\mathrm{OH})_{2}$ and P tetrahedra, and zigzag chains of edge-sharing $\mathrm{MnO}_{5}(\mathrm{OH})$
	octahedra, both $/ /[01]$, are cross-linked by a common $\mathrm{O}_{5}(\mathrm{OH})$ to form a 3-dimensional framework with
weak bonds $/ /(010)$.	

MBAAA

SERIES C BABEFPHITE, tetr/Fdd2. Structure consists of a 3-dimensional framework composed of interwoven chains of corner-sharing PO_{4} and $\mathrm{Be}(\mathrm{O}, \mathrm{F})_{4}$ tetrahedra, enclosing edge-sharing Ba polyhedra.

TYPE B \quad Structures With only Medium-sized Cations (OH, etc):RO4 </= 1:1.

AMBLYGONITE SERIES, tric/P1. Structure consists of chains of corner-sharing $\mathrm{AlO}_{4}(\mathrm{~F}, \mathrm{OH})_{2}$ octahedra // [010] which are combined by corner-sharing with P tetrahedra to form a 3-dimensional framework with (Li,Na) in pseudohexagonal cavities.

AMBLYGONITE
($\mathrm{Li}, \mathrm{Na}) \mathrm{Al}\left(\mathrm{PO}_{4}\right)(\mathrm{F}, \mathrm{OH})$
MBBAB
MBBAC
MONTEBRASITE
$\mathrm{LiAl}\left(\mathrm{PO}_{4}\right)(\mathrm{F}, \mathrm{OH})$

MBBAD

SERIES B TRIPLITE SERIES, mon/l2/a. Structure consists of edge-sharing $\mathrm{MO}_{4} \mathrm{~F}_{2}$ octahaedra // [100] and [010] and are connected via common corners and by sharing corners of phosphate tetrahedra to forma 3dimensional framework; similar to the tripoidite structure.

MBBBA
MBBBB
MBBBC
TRIPLITE
$(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Mg})_{2}\left(\mathrm{PO}_{4}\right) \mathrm{F}$

MBBBD

SERIES C WAGNERITE SERIES, mon/P2 ${ }_{1} /$ a. Structure composed of chains of alternating edge- and cornersharing $\mathrm{MO}_{4}(\mathrm{OH})_{2}$ octahedra and $\mathrm{MO}_{3} \mathrm{O}(\mathrm{OH})$ trigonal dipyramids // [100] and [010] are connected via common corners and by sharing corners of \mathbf{P} tetrahedra to form a 3-dimensional framework; structure similar to that of triplite. The crystal structures of the two polytypes of stanekite consists of a rather regular P tetrahedron and two symmetrically different strongly distorted MO_{6} octahedra. Independent of their valency, the cations \mathbf{M} are distributed over the octahedral sites. The $\mathbf{M O}_{6}$ octahedra share common edges to form zigzag chains running // to [010] for [(M1) O_{6}] and to [100] for [(M2) O_{6}], respectively. Both chain types are futher interconnected by additional edges along the c axis to build an open framework that hosts the P tetrahedra.

MBBCA
MBBCB
MBBCC

WAGNERITE-Ma2bc
TRIPLOIDITE
WOLFEITE
$\mathrm{Mg}_{2} \mathrm{PO}_{4} \mathrm{~F}$
$(\mathrm{Mn}, \mathrm{Fe})_{2}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})$
$(\mathrm{Fe}, \mathrm{Mn})_{2}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})$

MBBCD	SARKINITE	$\mathrm{Mn}_{2}\left(\mathrm{AsO} \mathrm{A}_{4}\right)(\mathrm{OH})$	
MBBCE	STANEKITE-Mabc	$\mathrm{Fe}(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Mg})\left(\mathrm{PO}_{4}\right) \mathrm{O}$	
MBBCF	WAGNERITE-Ma5bc	$(\mathrm{Mg}, \mathrm{Fe}, \mathrm{Ti})\left(\mathrm{PO}_{4}\right)(\mathrm{F}, \mathrm{OH})$	mon/la
MBBCG	STANEKITE-Ma2bc	$\left.\mathrm{Fe}(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Mg})(\mathrm{PO})_{4}\right) \mathrm{O}$	
MBBCH	JOOSTEITE	$\mathrm{Mn}^{2+}\left(\mathrm{Mn}^{3+}, \mathrm{Fe}\right)\left(\mathrm{PO}_{4}\right) \mathrm{O}$	
MBBCI	HYDROXYLWAGNERITE	$\mathrm{Mg}_{2} \mathrm{PO}_{4}(\mathrm{OH}, \mathrm{F})$	
MBBCJ	SARKINITE-(Ce)		
MBBJK	SARKINITE-(La)		
MBBJL	ARSENOWAGNERITE	$\mathrm{Mg}_{2}\left(\mathrm{AsO}_{4}\right) \mathrm{F}$	

SERIES D SATTERLYITE SERIES, hex/P31m ,P31m. Structure consists of pairs of face-sharing (Mg,Fe) octahedra sharing edges to form double chains // [0001]; the double chains share corners and corners of the phosphate tetrahedra to produce a 3-dimensional framework. A structural relationship exists with phosphoellenbergite.

SATTERLYITE
holtedahlite

$$
\begin{aligned}
& (\mathrm{Fe}, \mathrm{Mg}, \mathrm{Fe})_{2}\left(\mathrm{PO}_{4}\right)(\mathrm{OH}) \\
& \mathrm{Mg}_{12}\left(\mathrm{PO}_{3} \mathrm{OH}^{\left(\mathrm{CO}_{3}\right)\left(\mathrm{PO}_{4}\right)_{5}(\mathrm{OH}, \mathrm{O})_{6}}\right.
\end{aligned}
$$

SERIES E ALTHAUSITE-STOIBERITE-FINGERITE SERIES, orth/Pnma. Structure contains chains of edgesharing $\mathrm{MgO}_{4}(\mathrm{OH}) \mathrm{F}$ octahedra // [010] and pairs of edge-sharing $\mathrm{MgO}_{3}(\mathrm{OH}) \mathrm{F}$ trigonal dipyramids; both of these units are bonded via common edges and by sharing corners with P tetrahedra to form a 3-dimensional framework. Magnesium atoms occur in both five- and six-fold coordination and the coordination polyhedra are highly distorted. The Mg octahedra form chains along b by edgesharing. Hydroxyl and fluorine occur in a largely ordered distribution among two different structural sites and occupy alternating positions along channels parallel to b . Partial vacancy in the (OH,F) sites is confirmed, the population factor for the F site being 81 percent.

Crystal structure of averievite Cu5O2(VO4)•nMCIx ($\mathrm{M}=\mathrm{Cu}, \mathrm{Cs}, \mathrm{Rb}, \mathrm{K}$) has been refined using the holotype specimen from the Tolbachik volcano in the space group P-3m1 [a=6.3778(2), $\mathrm{c}=8.3966(3)$ A] to R-0.041 for 489 independent reflections with $\mathrm{F}>4 \mathrm{C}$ (F). The structure contains two Cu sites, of which Cul has a square-planar coordination, whereas the Cu2 site has a trigonal bipyramidal coordination. One symmetrically independent $V 5+$ cation forms vanadate tetrahedra with the average).nMCl length $(\mathrm{V}-\mathrm{O})=1.714 \mathrm{~A}$. Among three symmetrically independent O sites, the Oq atom is not bonded with $\mathrm{V} 5+$ cations, and is coordinated by four Cu atoms, forming the oxocentered ($\mathrm{OCu4}$)6+ tetrahedron. These tetrahedra, sharing their vertices, form [02Cu5]6+ sheets of six-member rings, in which two joint tetrahedra are oriented into opposite directions relatively to the sheet plane parallel to (100). Triangular faces of oxocentered tetrahedra are linked to the (VO4)3~ tetrahedra accordingto the 'face-to-face' principle, which results in formation of electroneutral porous framework \{[O2Cu5](VO4)2\}O with wide channels elongated parallel to the \mathbf{c} axis and having crystallographic free diameter about 3.7 A. The channels accommodate two cations (MI, M2) and one anion (CI) sites with the 1 : 1 cation : anion ratio. trigonal bipyramids in the a- and b-axis directions. AsO_{4} groups connect the two Zn polyhedron types to produce a dense framework structure in which all O atoms and OH groups are trigonally coordinated. All species of the group are isostructural. All minerals have the andalusite structure type.

$$
\begin{aligned}
& \mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right) \\
& \mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{PO}_{4}\right) \\
& \mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)
\end{aligned}
$$

MBBFD	EVEITE	$\mathrm{Mn}_{2}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$
MBBFE	ZINCOLIBETHENITE	$(\mathrm{Zn}, \mathrm{Cu})_{2}(\mathrm{OH})\left(\mathrm{PO}_{4}\right)$
MBBFF	ZINCOLIVENITE	$\mathrm{CuZn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$
MBBFG	AURIACUSITE	$\mathrm{Fe}^{3+} \mathrm{Cu}^{2+}(\mathrm{As}, \mathrm{Sb}) \mathrm{O}_{4} \mathrm{O}$
SERIES G	TARBUTTITE SERIES, tric/P1. Structure contains chains of edge-sharing $\mathrm{ZnO}_{3}(\mathrm{OH})_{2}$ trigonal dipyramids // [010] and dimmers of two edge-sharing $\mathrm{ZnO}_{3} \mathrm{O}(\mathrm{OH})$ trigonal dipyramids; both of these units and \mathbf{R} tetrahedra are corner-linked to form a 3-dimensional framework.	
MBBGA	PARADAMITE	$\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$
MBBGB	TARBUTTITE	$\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{PO}_{4}\right)$
SERIES H	LAZULITE SERIES, mon/P2 ${ }_{1} / \mathrm{c}$. The structure consists of the packing of $(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O}_{6}$ octahedra and PO_{4} tetrahedra. It contains chains of AlO_{6} corner-sharing octahedra, along the \underline{c} axis, linked by facesharing (Mg, Fe) O_{6} octahedra. The resulting layers are linked by PO_{4} tetrahedra. The jagowerite structure consists of a network of PO_{4} tetrahedra sharing corners with $\mathrm{Al}(\mathrm{O}, \mathrm{OH})$ octahedra which in turn share edges in pairs. The Ba is 12-coordinated in a cavity formed by four pairs of edge-shared octahedra.	
MBBHA	LAZULITE	$(\mathrm{Mg}, \mathrm{Fe}) \mathrm{Al}_{2}(\mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{2}$
MBBHB	SCORZALITE	$(\mathrm{Fe}, \mathrm{Mg}) \mathrm{Al}_{2}(\mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{2}$
MBBHC	BARBOSALITE	$\mathrm{FeFe}_{2}(\mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{2}$
MBBHD	HENTSCHELITE	$\mathrm{CuFe}_{2}(\mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{2}$
SERIES I	LIPSCOMBITE-TROLLEITE SERIES, tetr,/P4. The structure consists of face-sharing $\mathrm{FeO}_{4}(\mathrm{OH})_{2}$ octahedra forming chains // [110] and [110], alternating in planes // (001); both are corner-linked by common (OH) groups and P tetrahedra to form a 3-dimensional framework. In trolleite, two facesharing AI octahedra form $\mathrm{Al}_{2} \mathrm{O}_{6}(\mathrm{OH})_{3}$ dimers that are corner-linked to form double chains // [001] which are further linked into a 3-dimensional framework by P tetrahedra.	
MBBIA	RICHELLITE	$\mathrm{Ca}_{3} \mathrm{Fe}_{10}\left(\mathrm{PO}_{4}\right)_{8}(\mathrm{OH}, \mathrm{F})_{12} 6 \mathrm{H}_{2} \mathrm{O}$
MBBIB	LIPSCOMBITE	$\mathrm{FeFe}_{2}(\mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{2}$
MBBIC	TROLLEITE	$\mathrm{Al}_{4}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{3}$
MBBID	ZINCLIPSCOMBITE	$\mathrm{ZnFe}^{3+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})$
SERIES J	NAMIBITE, Tric/P1. The structure consists of a three-dimensional network formed by linkages of BiO polyhedra to one slightly distorted $\mathrm{V}^{5+} \mathrm{O}_{4}$ tetrahedron that decorates chains of corner-sharing CuO_{6} polyhedra. Layers of Bi atoms parallel to (100) alternate with layers of parallel heteropolyhedral $\left[\mathrm{Cu}\left(\mathrm{VO}_{4}\right) \mathrm{O}_{2}(\mathrm{OH})\right]$ chains. The structure of Namibite represents a slightly distorted ordered variant of the monoclinic structure of brendelite.	
MBBJA	NAMIBITE	$\mathrm{Cu}(\mathrm{BiO})_{2}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$
SERIES K	ELLENBERGERITE SERIES, hex/P63mc. Structure consist of dimmers of face-sharing $\mathrm{MgO}_{5} \mathrm{OH}$ and Al octahedra sharing edges to form 2-periodic zigzag chains // [0001]; these dimmers are linked by shared OH to form 3-membered channels that contain insular $\mathrm{Si}(\mathrm{P})$ tetrahedra, and 6 -membered channels that contain linear chains of face-sharing ($\mathrm{Mg}(\mathrm{Ti}, \mathrm{Zr}) \mathrm{O}_{4}(\mathrm{OH})_{2}$ octahedra and six interconnected \mathbf{P} tetrahedra; the linear chains are surrounded by two H ions. There is a close structural relationship with the satterlyite structure.	
MBBKA	PHOSPHOELLENBERGERITE	$\mathrm{Mg}_{14}\left(\mathrm{PO}_{4}\right)_{6}\left[\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{1.24}\left(\mathrm{CO}_{3}\right)_{0.76}\right]_{2}(\mathrm{OH})_{6}$
SERIES L	OPEN	

BATAGAYITE

$$
\mathrm{CaZn}_{2}(\mathrm{Zn}, \mathrm{Cu})_{2}\left(\mathrm{PO}_{4}\right)_{4}\left[\mathrm{PO}_{3}(\mathrm{OH})_{3}\right]_{3} .12 \mathrm{H}_{2} \mathrm{O}
$$

TYPE C \quad Structures With Only Medium-sized cations, (OH, etc.) : $\mathrm{RO}_{4}>1: 1$ and $<2: 1$

MBCAA
MBCAB

SERIES B

MBCBA
MBCBB
MBCBC
MBCBD
MBCBE

ANGELELLITE-AERUGITE SERIES, tric/trigonal. Structure consists of edge-sharing Fe octahedra build staircase-like chains // [001] which are corner-linked along [100] to form sheets // (010); the sheets are linked by As tetrahedra. In aerugite, sheets // (0001) of edge-sharing Ni octahedra and As tetrahedra alternate with halite-like sheets of As and Ni octahedra.

> AERUGITE
ANGELELLITE

$$
\begin{aligned}
& \mathrm{Ni}_{8.5} \mathrm{As}\left[\mathrm{O}_{8} /\left(\mathrm{AsO}_{4}\right)_{2}\right] \\
& \mathrm{Fe}_{4}\left(\mathrm{AsO}_{4}\right)_{2} \mathrm{O}_{3}
\end{aligned}
$$

ROCKBRIDGEITE SERIES, mon/Bbmm. Structure consists of trimers of 3 face-sharing (Fe,Mn) octahedra which are linked into zigzag chains // [010] by edge-sharing (Fe,Mn) octahedra. These chains are cross-linked into (010) slabs by P tetrahedra and dimmers of corner-sharing octahedra. The rockbridgeite group has been officially established by the IMA Commission on New Minerals, Nomenclature and Classification. The general formula is based on the structure and is A 2 B 3 (PO 4) 3 ($\mathrm{OH}, \mathrm{H} 2 \mathrm{O}$) 5 , where $\mathrm{A}=$ the octahedrally coordinated M 2 site, in which divalent cations are ordered, and B = the octahedrally coordinated M1 + M3 sites, which contain predominantly Fe 3+ , with trace Al. The different rockbridgeite-group minerals are distinguished by the occupancy of the A site. The ideal formula for rockbridgeite is Fe $2 \mathrm{p} 0: 5 \mathrm{Fe} 3 \mathrm{p} 0: 5 \mathrm{~A}$ Á 2 Fe 3 p 3 PO 4 д p 3 OH д P 5 , that
 Fe 3p 3 PO 4 д p 3 OH д p 4 ðН 2 OP. In order to preserve the identity of frondelite and rockbridgeite within the structure-based formalism, these species correspond to mid-series compositions. We describe here the new end-member, ferrorockbridgeite, with dominant Fe 2+ in the A site, from the Hagendorf Süd pegmatite mine, Oberpfalz, Bavaria. Electron microprobe analyses, coupled with Mössbauer spectroscopy, gives the empirical formula Fe 2p 1:33 Mn 2p 0:52 Zn 0:03 Ca 0:05 Fe 3p 3:03 Al 0:01 P 2:97 H 6:17 O 17. The simplified formula is Fe 2p; Mn 2p д P 2 Fe 3p 3 PO 4 д P 3 OH б P 4 ठH 2 OP. Ferrorockbridgeite is orthorhombic, space group Bbmm, with $a=13.9880(4), b=$ $16.9026(5), c=5.1816(1)^{\circ} A, V=1225.1^{\circ} A 3$ and $Z=4$. The six strongest lines in the X-ray powder diffraction pattern are [d meas $/{ }^{\circ} \mathrm{A}(\mathrm{I})$ (hkl Optically, ferrorockbridgeite is biaxial (-) with a = 1.763(3), $b=1.781$ (calc), $c=1.797(3)$ (white light) and $2 V$ (meas.) $=87(1)^{\circ}$ from extinction data. The optical orientation is $X=c, Y=a, Z=b$. The pleochroism is $X=$ blue green, $Y=$ olive green, $Z=$ yellow brown; X \% Y > Z.

ROCKBRIDGEITE
FRONDELITE
PLIMERITE
FERROROCKBRIDGEITE
FERRIROCKBRIDGEITE

$$
\begin{aligned}
& \mathrm{FeFe}_{4}(\mathrm{OH})_{5}\left(\mathrm{PO}_{4}\right)_{3} \\
& \mathrm{MnFe}_{4}(\mathrm{OH})_{5}\left(\mathrm{PO}_{4}\right)_{3} \\
& \mathrm{ZnFe}_{4}^{3+}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{5} \\
& \left({\mathrm{Fe}, \mathrm{Mn})_{2} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)}^{\left(\mathrm{Fe}^{3+}{ }_{0.67} \square_{0.33}\right)_{2}\left(\mathrm{Fe}^{3+}\right)_{3}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)}\right.
\end{aligned}
$$

SERIES C IANBRUCEITE, mon/P2 ${ }_{1} / \mathrm{c}$. Structure consists of [[5]Zn[6]Zn $\varphi 7$] chains extending in the c direction and are linked in the b direction by sharing corners with As tetrahedral to form slabs with a composition $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right.$. The space between these slabs is filled with disordered wagter groups and minor lone-pair As^{3+}. The structure consists of [5]-coordinated Zn triangular bipyramids which chare common (OH) vertices to form chains that extend in the c direction. These chains are decorated by Zn octahedra, each of which shares edges with adjacent Zn triangular bipyramids and form zigzag chains extending in the c direction. These chains are, in turn, linked in the b direction by sharing corners with arsenate groups to form sheets. Two of these sheets link by sharing edges between Zn octahedra and vertices between both Zn polyhedra and As tetrahedra to form a slab with a composition of $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$. There are two possible disordered water groups in the interstitial space between adjacent slabs.

$$
\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.
$$

YAROSHEVSKITE, tric/P1. The structure is unique. It is based on corrugated layers made up of chains of edge-sharing flat squares with central Cu cations; neighbouring chains are connected via groups consisting of three Cu-centered squares. Neighbouring layers are connected via pairs of $\mathrm{Cu}(2) \mathrm{O}_{4} \mathrm{Cl}$ five-coordinated polyhedra and isolated VO_{4} tetrahedra. The structure can also be considered in terms of oxygen-centered tetrahedra: $O(7) \mathrm{Cu}_{4}$ tetrahedra are connected via common $\mathrm{Cu}(4)$ and $\mathrm{Cu}(5)$ vertices to form pyroxene-like chains. In context, the structural formula can be written $\mathrm{Cu}_{3}\left[\mathrm{O}_{2} \mathrm{Cu}_{6}\right]\left[\mathrm{VO}_{4}\right]_{4} \mathrm{Cl}_{2}$. Pekov, I.V., Zelenski, M.E., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Y.S., Pushcharovsky, D.Y. (2012) Yaroshevskite, IMA 2012-003. CNMNC Newsletter No. 13, June 2012, page 813; Mineralogical Magazine, 76, 807-817.

$$
\begin{aligned}
& \mathrm{Cu}_{9} \mathrm{O}_{2}\left(\mathrm{VO}_{4}\right)_{4} \mathrm{Cl}_{2} \\
& \mathrm{Cu}_{8} \mathrm{O}_{2}\left(\mathrm{VO}_{4}\right)_{3} \mathrm{Cl}_{3}
\end{aligned}
$$

DOKUCHAEVITE

SERIES E ABUITE, orth/P2 ${ }_{1} \mathbf{1}_{1} \mathbf{2}_{1}$. Structure consists of infinite chains of Al octahedra along [001] cis-linked by sharing two F atoms. two different chains are linked by P tetrahedra, giving rise to channels along [001] delimited by a helical distribution of O anions in which the Sr cations are found. Enju, S. and Uehara, S. (2015) Abuite, IMA 2014-084. CNMNC Newsletter No. 23, February 2015, page 58; Mineralogical Magazine, 79, 51 -58.

ABUITE

$$
\mathrm{CaAl}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{~F}_{2}
$$

TYPE D Structures with only Medium-sized cations, (OH, etc.) : $\mathrm{RO}_{\mathbf{4}}=\mathbf{2 : 1}$
PSEUDOMALACHITE SERIES, mon/P2 ${ }_{1} / \mathrm{c}$. Structure consists of Cu polyhedra sharing three edges to form sheets // (100) of 5-membered rings; vacant octahedral sites are capped on both sides of the sheet by two opposing XO_{4} tetrahedra that link the sheets by sharing corners with the octahedra. The structure of turanite consists of layers of the Cu octahedra which are // to (001) and make a basis of crystal st rucutre. There are three Cu sites, first of which is coosrdinated by four $(\mathrm{OH})($ groups and two O atoms; the $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$ sites are coordinated by two (OH) groups and four O atoms sarespectively. Also there is a single four-coordinated V site surrounded by the \mathbf{O} atoms. Each of the VO_{4} stetrahedra leans by three of four its vertices on the vertices of the vacant octahedra. Being located between the Cu octahedra layers, the tetrahedra form a structure of sandwich.

$$
\begin{aligned}
& \mathrm{Cu}_{5}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4} \\
& \mathrm{Cu}_{5}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{4} \cdot \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Cu}_{5}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4} \\
& \mathrm{Cu}_{5}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{4} \\
& \mathrm{Cu}_{5}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4} \\
& \mathrm{Cu}_{5}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})_{4}
\end{aligned}
$$

ARSENOCLASITE-PARWELITE SERIES, orth/ $\mathrm{P}_{2} \mathbf{1 2}_{1} \mathbf{2}_{1}$. Members of this group have extremely complicated structures. The arsenoclasite structure can be visualized as ribbons of edge-sharing Mn octahedra, 3-membered rings formed by chains of corner-sharing Mn trigonal dipyramids linked to corner-sharing RO_{4} tetrahedra, and chains of corner-linked RO_{4} and MnO_{4} tetrahedra. The structure is constructed of a double hexagonal close-packed array of oxygen atoms whose layers are stacked perpendicular to the c-axis. This arrangement is based on walls and chains of three distinct coordination polyhedra: $\mathbf{M n}^{6+}-\mathbf{O}$ octahedra, $\mathbf{M n}^{5+}-\mathrm{O}$ trigonal bipyramids and $\mathbf{M n}^{4+}-0$ tetrahedra (trigonal pyramids). The cationic occupancies are very complicated. Three nonequivalent octahedra, $\mathrm{Mn}(2)-\mathrm{O}, \mathrm{Mn}(3)-\mathrm{O}$ and $\mathrm{Mn}(4)-\mathrm{O}$, link by edge-sharing to form walls alternately one- and two-octahedra wide which run parallel to the b-axis. Also running parallel to this axis are chains of corner-sharing $\mathrm{Mn}(1)-\mathrm{O}$ trigonal bipyramids which further link by corner-sharing to $\mathrm{As}(2)-\mathrm{O}$ tetrahedra forming three-membered rings; and chains of corner-linked $\mathrm{As}(1)-\mathrm{O}$ and $\mathrm{Mn}(5)-\mathrm{O}$ tetrahedra.
MBDBB
MBDBC
MBDBD

$$
\begin{aligned}
& \mathrm{Mn}_{5}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{4} \\
& \mathrm{Mn}_{5}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})_{4} \\
& \mathrm{Mn}_{5}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4} \\
& (\mathrm{Mn}, \mathrm{Ca}, \mathrm{Mg})_{5} \mathrm{Sb}^{5+}\left[\mathrm{O}_{4} / \mathrm{AsO}_{4} / \mathrm{SiO}_{4}\right]
\end{aligned}
$$

REPPIAITE
GATEHOUSEITE
PARWELITE

TYPE E. \quad Structures With only Medium-sized cations, (OH, etc.): $\mathrm{RO}_{4}>\mathbf{2 : 1}$

SERIES A AUGELITE SERIES, mon/C2/m. . In augelite, (001) layers of edge-sharing AI octahedra and AI polyhedra are linked by P tetrahedra. In grattarolaite, three edge-sharing FeO_{5} trigonal dipyramids form $\mathrm{Fe}_{3} \mathrm{O}_{10}$ clusters that are connected by P tetrahedra. In cornetite, chains of edge-sharing Cu octahedra // [001] are cross-linked by dimmers of edge-sharing octahedra, forming layers // (100); the layers are linked by \mathbf{P} tetrahedra that share edges with the dimmers. Clinoclase has a polyhedral framework of As tetrahedra, $\mathrm{CuO}_{3}(\mathrm{OH})_{3}$ octahedra and $\mathrm{CuO}_{2}(\mathrm{OH})_{3}$ square pyramids. In gilmarite, Cu octahedra and Cu square pyramids form chains // [010]; the chains are combined into sheets // (001) by Cu square pyramids, and the sheets are linked by As tetrahedra.

MBEAA	AUGELITE
MBEAB	GRATTAROLAITE
MBEAC	CORNETITE
MBEAD	CLINOCLASE
MBEAE	GILMARITE
MBEAF	ARHBARITE

$\mathrm{Al}_{2}(\mathrm{OH})_{3}\left(\mathrm{PO}_{4}\right)$	
$\mathrm{Fe}_{3} \mathrm{O}_{3} \mathrm{PO}_{4}$	
$\mathrm{Cu}_{3}(\mathrm{OH})_{3}\left(\mathrm{PO}_{4}\right)$	orth/Pbca
$\mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{3}$	
$\mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{3}$	
$\mathrm{Cu}_{2}\left(\mathrm{Mg}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{3}\right.$	mon/tric

ALLACTITE-FLINKITE SERIES, mon/P2 ${ }_{1} /$ a. Structure consists of chains of edge-sharing Mn octahedra // [010] which are linked by Mn square pyramids to form open sheets //(001); the sheets are linked by As tetrahedra. Both structures can be visualized as comprising strips of the brucite structure.

MBEBA
MBEBB
MBEBC
MBEBD
ALLACTITE

$$
\begin{aligned}
& \mathrm{Mn}_{7}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{8} \\
& \mathrm{Mn}_{2} \mathrm{Mn}(\mathrm{OH})_{4}\left(\mathrm{AsO}_{4}\right) \\
& \mathrm{Mg}_{7}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{8} \\
& \mathrm{Mn}_{7}\left(\mathrm{VO}_{4}\right)_{2}\left((\mathrm{OH})_{8}\right.
\end{aligned}
$$

CHLOROPHOENICITE-GERDTREMMELITE SERIES, mon/C2/m \& tric/P1. The structure is based on infinite insular slabs of the formula units parallel to a. Slabs are H bonded to each other only and perfect a cleavage is observed. The slabs are in turn made up of $\mathbf{M n}-(\mathbf{O}, \mathbf{O H})$ octahedral pyrochroite fragments or bands three octahedra wide running parallel to b, connected along c by As and $\mathbf{Z n}$ tetrahedral chains which also run parallel to b. The structure contains fragments of the pyrochroite structure.

MBECA
MBECB
MBECC
MBECD

SERIES D

GERDTREMMELITE
CHLOROPHOENICITE
MAGNESIUM-CHLOROPHOENICITE
JAROSEWICHITE

$$
\begin{aligned}
& (\mathrm{Zn}, \mathrm{Fe})(\mathrm{Al}, \mathrm{Fe})_{2}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{5} \\
& (\mathrm{Mn}, \mathrm{Mg})_{3} \mathrm{Zn}_{2}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH}, \mathrm{O})_{6} \\
& (\mathrm{Mg}, \mathrm{Mn})_{3} \mathrm{Zn}_{2}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH}, \mathrm{O})_{6} \\
& \mathrm{Mn}_{3} \mathrm{Mn}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH}, \mathrm{O})_{6}
\end{aligned}
$$

HEMATOLITE SERIES, trig/R3, R $\underline{3} \mathbf{c}, \mathrm{P6}_{3} 22$. The structure is based on the dense-packed stacking sequence .hhhch. Which includes 34 oxygens and one lone electron pair with seven anions per layer. The five non-equivalent layers are 1) isolated octahedra; 2) octahedral and tetrahedral sheet identical to that found in welinite, 3) octahedral and trigonal pyramidal sheet much like 2); 4) insular octahedra and tetrahedra, and 5) octahedral sheets of the type [$M_{3 \varphi_{7}}$] found in chalcophanite. These layers are coupled to each other by corner- and edge-sharing. In dixenite, a metallic [$\mathrm{As}^{3+}{ }_{4} \mathrm{Cu}^{1+}$] cluster is identified in the oxide matrix. Structure of hematolite is based on three different sheets // (0001): a) edge-sharing Mn octahedra and corner-sharing As tetrahedra; b) groups of edge-sharing octahedra linked by AsO_{3} trigonal pyramids; and c) edge-sharing Mn octahedra. The sheets are linked by Mn octahedra and As tetrahedra. The structures of mcgovernite, dixenite, arakiite and kraisslite are similar except for the occurrence of CuAs_{4} tetrahedra in one of the sheets in dixenite. The kraisslite structure consists of five crystallographically distinct layers of polyhedral, labeled $m=0-4$. Layer $m=0$ consists of corner-sharing Zn and ($\mathrm{Si}, \mathrm{As5+}$) tetrahedral, and layers $\mathrm{m}=1-4$ each consist of trimers of Mn2+ octahedral linked by (Si, As) tetrahedral and intrasheet H bonds ($\mathrm{M}=1, \mathbf{3}$) or (Si, As) tetrahedra and (Fe, Al) octahedral ($\mathrm{m}=2$) or (As) tetrahedral and (As3+O3) triangular pyramids and intrasheet H

MBEDA
MBEDB
MBEDC
MBEDD
MBEDE
MBEDF
MBEDG
MBEDH

SERIES E

MBEEA
MBEEB

SYNADELPHITE orth/Pnma HEMATOLITE KRAISSLITE DIXENITE MCGOVERNITE ARAKIITE TURTMANNITE

CARLFRANCISITE
bonds $(m=4)$. The layers stack along [001] with reversal of the sequence. The crystal structures of carlfrancisite, ideally Mn32+(Mn2+,Mg,Fe3+,AI)42(As3+O3)2(As5+O4)4[(Si,As5+)O4]8(OH)42, hexagonal (rhombohedral), $\mathrm{R}-3 \mathrm{~m}$ with $\mathrm{Z}=6$, and unit-cell parameters: $\mathrm{a}=8.2238(2), \mathrm{c}=$ 205.113(6) \AA and $V=12013.5(4) \AA 3$, from the Kombat mine, Otavi Valley, Namibia, and mcgovernite, ideally Zn3(Mn2+,Mg,Fe3+,AI)42(As3+O3)2(As5+O4)4[(Si,As5+)O4]8(OH)42, hexagonal (rhombohedral), R-3m with $Z=6$, and unit-cell parameters: $a=8.2061(3), c=204.118(8) A$ and $V=11903.8(6) \AA 3$, from Sterling Hill, New Jersey, have been solved by direct methods and refined to R1 values of 3.37 and 5.02% for 3837 and 3772 unique observed reflections, respectively; they are isostructural. Chemical analysis by electron microprobe and crystal-structure refinement gave the following compositions: carlfrancisite: As2O5 12.89, As2O3 3.33, P2O5 0.50, V2O5 0.74, SiO2 8.96, Al2O3 0.78, FeO 0.22, MnO $53.25, \mathrm{MgO} 9.37, \mathrm{H} 2 \mathrm{O}$ (calc) 8.42, sum 98.50 wt.\%; mcgovernite: As2O5 13.06, As2O3 3.71, SiO2 9.34, Al2O3 0.20, FeO 1.38, MnO 44.58, ZnO 8.81, MgO 8.89, H2O(calc) 8.24, sum 98.21 wt.\%. The H2O contents and the valence states of As were determined by crystal-structure analysis.
There are 18 crystallographically distinct cation sites in both carlfrancisite and mcgovernite. There are two [4]-coordinated As sites fully occupied by As5+, and four T sites occupied by Si and As5+ in solid solution. The As(3) site has triangular pyramidal coordination with distances of 1.808 and 1.817 Å, typical of As3+. The Z(1) site, occupied by Mn2+ in carlfrancisite and Zn in mcgovernite, has tetrahedral coordination, and the $\mathbf{Z}(2)$ site is only partly occupied by Mg and Mn2+ in both structures. There are nine M sites, all of which are octahedrally coordinated and contain dominantly Mn2+ and $\mathbf{M g}$, with minor Al and Fe. There are three cation sites with significant vacancies: As(3), Z(2), M(3), and there are complicated patterns of short-range order involving the cations and vacancies at these sites.
The carlfrancisite-mcgovernite structure contains 84 layers of approximately close-packed polyhedra along one translation on c. The anions in the structure are arranged in approximately close-packed layers orthogonal to the caxis. Fourteen layers stack along the caxis in the sequence ${ }^{* *}$ hhchch•hchchh| (* denotes a layer of anions displaced from close packed). There are eight distinct layers of cation-centred polyhedra that repeat via a centre of symmetry at the origin, and via the Rcentering to give 84 layers per unit-cell.

HOLDENITE-KOLICITE SERIES, orth/Abma. The structure is based on an open tetrahedral sheet of composition ${ }^{2}{ }_{[}\left[\mathrm{Zn}_{2} \mathrm{SiO}_{6}(\mathrm{OH})_{2}\right]$, oriented parallel to $\{010\}$, further links to AsO_{4} tetrahedra to form thick slabs of composition ${ }^{2}\left[\mathrm{Zn}_{2} \mathrm{As}_{2} \mathrm{SiO}_{12}(\mathrm{OH})_{2}\right]$. Insular $\mathrm{Zn}(\mathrm{OH})_{4}$ tetrahedra also occur in the structure. These link to complex aggregates of $\mathrm{Mn}(\mathrm{O}, \mathrm{OH})_{6}$ condensed octahedra to form a framework structure. Structure of hematolite is based on three different sheets // (0001): a) edge-sharing Mn octahedra and corner-sharing As tetrahedra; b) groups of edge-sharing octahedra linked by AsO ${ }_{3}$ trigonal pyramids; and c) edge-sharing Mn octahedra. The sheets are linked by Mn octahedra and As tetrahedra. The structures of mcgovernite, dixenite, arakiite and kraisslite are similar except for the occurrence of CuAs_{4} tetrahedra in one of the sheets in dixenite.

HOLDENITE
$(\mathrm{Mn}, \mathrm{Mg})_{6} \mathrm{Zn}_{3}(\mathrm{OH})_{8}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{SiO}_{4}\right)$
KOLICITE
$\mathrm{Mn}_{7} \mathrm{Zn}_{4}(\mathrm{OH})_{8}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{SiO}_{4}\right)_{2}$
Cmca

SERIES F SABELLIITE, trig/P3. Structure consists of edge-sharing Cu- and Zn octahedra forming brucite-like layers // (0001); clusters of six edge-sharing $\mathbf{Z n}$ octahedra linked by As tetrahedra are accommodated between the layers.

MBEFA
SABELLIITE
$(\mathrm{Cu}, \mathrm{Zn})_{2} \mathrm{Zn}\left[(\mathrm{As}, \mathrm{Sb}) \mathrm{O}_{4}\right](\mathrm{OH})_{3}$

SERIES G THEISITE, orth. Structure not known. Williams, S. A. (1982): Theisite, a new mineral from Colorado. Mineralogical Magazine: 46: 49-50.
American Mineralogist (1983): 68: 282.
European Journal of Mineralogy (1995): 7: 1325. The crystal structure is unknown. Unlike in the formula

	suggested in the original publication, the Sb is probably present in octahedral coordination as $\mathrm{Sb}(\mathrm{OH})_{6}$ or $\mathrm{Sb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ groups.
MBEGA	THEISITE $\mathrm{Cu}_{5} \mathrm{Zn}_{5}\left[(\mathrm{As}, \mathrm{Sb}) \mathrm{O}_{4}\right]_{2}(\mathrm{OH})_{14}$
SERIES H	COPARSITE, orth/Pbcm. Structure consists of triplets of one $\mathrm{CuO}_{4} \mathrm{Cl}_{2}$ tetragonal dipyramid sharing edges with two CuO_{4} square planes which are connected into a framework by sharing corners with $\mathrm{CuO}_{4} \mathrm{Cl}$ tetragonal pyramids and As tetrahedra.
MBEHA	COPARSITE $\mathrm{Cu}_{4} \mathrm{O}_{2}\left[(\mathrm{As}, \mathrm{V}) \mathrm{O}_{4}\right] \mathrm{Cl}$
SERIES I	DOMEROCKITE, tri/P1. The structure comprises $\left[\mathrm{Cu}(\mathrm{O}, \mathrm{OH})_{4}\right]$ chains of edge-sharing, distorted octahedral that extend along [1011] and are decorated by AsO_{4} tetrahedra to form sheets in the (010) plane. Dimers of edge-sharing $\left[\mathrm{CuO}_{4}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedral share corners with dimerso of edgesharing $\left[\mathrm{CuO}_{4}(\mathrm{OH})\right]$ square pyramids to form zigzag chains which extend along [101]. The chains lie between and link to the sheets by sharing corners of octahedral, square pyramids and tetrahedral to form a heteropolyhedral framework.
MBEIA	DOMEROCKITE $\mathrm{Cu}_{4} \mathrm{H}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)(\mathrm{OH})_{3} \cdot \mathrm{H}_{2} \mathrm{O}$

TYPE F Structures With Medium-sized and Large Cations, (OH), etc.): $\mathrm{RO}_{4}<$ 0.5:1.

SERIES A	ARROJADITE SERIES, mon/C2/c. The complex structure of arrojadite is based on 49 nonequivalent atoms in the asymmetric unit, fifteen are larger cations, whose coordination polyhedra include six symmetry-independent octahedra, one tetrahedron, one square pyramid, one seven-coordinated polyhedron, two distorted cubes, one non-cubic polyhedron of order eight, two of ten, and one of twelve-coordination.	
MBFAA	ARROJADITE-(KFe)	$\mathrm{KNa} 4 \mathrm{CaMn}_{4} \mathrm{Fe}_{10} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{12}(\mathrm{OH}, \mathrm{F})_{2}$
MBFAB	DICKINSONITE-(KMnNa)	$(\mathrm{K}, \mathrm{Ba})(\mathrm{Na}, \mathrm{Ca})_{5}(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Mg})_{14} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{12}(\mathrm{OH}, \mathrm{F})_{2}$
MBFAC	ARROJADITE-(BaFe)	$(\mathrm{Ba}, \mathrm{K}, \mathrm{Pb}) \mathrm{Na}_{3}(\mathrm{Ca}, \mathrm{Sr})(\mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn})_{14} \mathrm{Al}(\mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{12}$
MBFAD	ARROJADITE-(SrFe)	$\mathrm{SrFe}^{2+} \mathrm{Na}_{2} \mathrm{Ca}(\mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg})_{13} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{11}\left(\mathrm{PO}_{3} \mathrm{OH}\right)(\mathrm{OH}, \mathrm{F})_{2}$
MBFAE	ARROJADITE-(KNa)	$\mathrm{KNa} 4 \mathrm{NaMn}_{4} \mathrm{Fe}_{10} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{12}(\mathrm{OH}, \mathrm{F})_{2}$
MBFAF	FLUORARROJADITE-(BaFe)	$(\mathrm{Ba}, \mathrm{K}, \mathrm{Pb}) \mathrm{Na}_{3}(\mathrm{Ca}, \mathrm{Sr})(\mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn})_{14} \mathrm{Al}(\mathrm{F}, \mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{12}$
MBFAG	ARROJADITE-(PbFe)	$(\mathrm{Pb}, \mathrm{Ba}, \mathrm{K}) \mathrm{Na}_{3}(\mathrm{Ca}, \mathrm{Sr})(\mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn})_{14} \mathrm{Al}(\mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{12}$
MBFAH	ARROJADITE-(BaNa)	$\mathrm{NaNa}_{3}(\mathrm{NaCa}) \mathrm{Fe}^{2+}{ }_{13} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{11}\left(\mathrm{PO}_{3} \mathrm{OH}\right)(\mathrm{OH})$
MBFAI	FLUORCAMOITE-(BaNa)	$(\mathrm{Ba} \square) \mathrm{Na}_{2} \square \mathrm{CaMg}{ }_{13} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{11}\left(\mathrm{PO}_{3} \mathrm{OH}\right) \mathrm{F}_{2}$
MBFAJ	FLUORARROJADITE-(BaNa)	$\mathrm{BaNa} 4 \mathrm{CaFe}_{13} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{11}\left(\mathrm{PO}_{3} \mathrm{OH}\right) \mathrm{F}_{2}$

SERIES B SAMUELSONITE, mon/C2/m. The structure is based on the fundamental column of composition [$\mathrm{Ca}_{4}\left(\mathrm{PO}_{4}\right)_{12}$]. This unit is fused by a screw axis to form double columns of composition $\left[\mathrm{Ca}_{4}\left(\mathrm{PO}_{4}\right)_{10}\right]$; the structure shows close similarities to apatite with respect to the columns. A complex structure based on double apatite-like columns // [010] of pinwheels consisting of Ca polyhedra sharing six faces with P tetrahedra. The columns, which are similar to those found in apatite, are bounded laterally by separate chains // [010] of edge-sharing M octahedra and corner-sharing Al octahedra.

MBFBA

SERIES C GRIPHITE-NABIASITE SERIES, cub/P2 ${ }_{1} / \mathrm{a} 3$. In graphite, $\mathrm{CaO}_{6} \mathrm{~F}_{2}$ cubes, mostly corner-sharing MO_{6} octahedra and P tetrahedra create a 3-dimensional cubic framework. In nabiasite, BaO_{12} dodecahedra share edges with six V tetrahedra, combined by edge-sharing MnO_{6} and $\mathrm{MnO}_{5}(\mathrm{OH})$ octahedra to form a densely-packed cubic framework.

MBFCA
GRIPHITE
$\mathrm{Na}_{4} \mathrm{Ca}_{6}(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Mg})_{19} \mathrm{Li}_{2} \mathrm{Al}_{8}\left(\mathrm{PO}_{4}\right)_{24}(\mathrm{~F}, \mathrm{OH})_{8}$
MBFCB
NABIASITE
$\mathrm{BaMn}_{9}\left[(\mathrm{~V}, \mathrm{As}) \mathrm{O}_{4}\right]_{6}(\mathrm{OH})_{2}$
TYPE G Structures With Medium-sized and Larger Cations, $(\mathrm{OH}$, etc. $): \mathrm{RO}_{4}=\mathbf{0 . 5 : 1}$.

SERIES A	BRACKENBUSCHITE SERIES, mon/P2 ${ }_{1} / \mathbf{m}$. . In gamagari ocatahedra // [010] are linked by V tetrahedra; face-shari [010]. In brackebuschite, linear chains of edge-sharing tetrahedra; the chains are linked by Pb polyhedra. In tsu octahedra // [010] are linked into a framework by sharing polyhedra The structure is based on the chain unit [$\mathrm{Cu}(\mathrm{C}$ interstitial Pb^{2+} cations. The structure of tornebohmite is octahedral chains that run parallel to [010]. Insular [SiO are arranged in trans configuration to these chains. The serrated wall of linked $\operatorname{REE} \varphi_{10}$ polyhedra that is oriented pyrobelonite and descloizite show a close structural rela	
MBGAA	ARSENBRACKEBUSCHITE	$\mathrm{Pb}_{2}(\mathrm{Fe}, \mathrm{Zn})\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})$
MBGAB	ARSENTSUMEBITE	$\mathrm{Pb}_{2} \mathrm{Cu}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{SO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
MBGAC	BEARTHITE	$\mathrm{Ca}_{2} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})$
MBGAD	BRACKEBUSCHITE	$\mathrm{Pb}_{2}(\mathrm{Mn}, \mathrm{Fe})\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})$
MBGAE	GAMAGARITE	$\mathrm{Ba}_{2}(\mathrm{Fe}, \mathrm{Mn})\left(\mathrm{VO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
MBGAF	GOEDKENITE	$(\mathrm{Sr}, \mathrm{Ca})_{2} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})$
MBGAG	TSUMEBITE	$\mathrm{Pb}_{2} \mathrm{Cu}\left(\mathrm{PO}_{4}\right)\left(\mathrm{SO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
MBGAH	FEINGLOSITE	$\mathrm{Pb}_{2}(\mathrm{Zn}, \mathrm{Fe})\left(\mathrm{AsO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
MBGAI	CALDERONITE	$\mathrm{Pb}_{2} \mathrm{Fe}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})$
MBGAJ	BUSHMAKINITE	$\mathrm{Pb}_{2} \mathrm{Al}\left(\mathrm{VO}_{4}\right)\left(\mathrm{PO}_{4}\right)(\mathrm{OH})$
MBGAK	TOKYOITE	$\mathrm{Ba}_{2} \mathrm{Mn}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})$
MBGAL	GRANDAITE	$\mathrm{Sr}_{2} \mathrm{Al}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})$
MBGAM	FERRIBUSHMAKINITE	$\mathrm{Pb}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$
MBGAN	CANOSIOITE	$\mathrm{Ba}_{2} \mathrm{Fe}^{3+}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})$
MBGAO	LOMBARDOITE	$\mathrm{Ba}_{2} \mathrm{Mn}^{3+}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})$

SERIES B MELONJOSEPHITE, orth/Pbam. The structure is based on chains of edge-sharing Fe-O octahedra oriented parallel to the \mathbf{c} axis. Dimers of edge-sharing Fe-O octahedra share vertices with octahedra of the chains to form sheets parallel to $\{010\}$ with the formula $\left[\mathrm{Fe}_{2}(\mathrm{OH})(\mathrm{Op})_{7}\right]^{2}$. The phosphate tetrahedra link within and between sheets to form a framework structure. The CaO_{7} polyhedron occurs in pockets between the sheets. Regions of the melonjosephite structure can be directly related to the octahedral tetramer in lelucophosphite, and regions of the structure of olmsteadite and related compounds. Structure consists of chains of edge-sharing Fe octahedra // [001] which are linked by dimmers of edge-sharing Fe octahedra, forming sheets // (010). P tetrahedra link within and between sheets to form a framework. Ca polyhedra are in pockets between the sheets.

$$
\mathrm{CaFeFe}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})
$$

SERIES C PROSPERITE, mon/C2/c or Cc. Structure consists of a complex framework of Ca polyhedra, Zn trigonal dipyramids and arsenate tetrahedra that are connected by sharing faces, edges and corners.

MBGCA
PROSPERITE
$\mathrm{HCaZn} \mathrm{n}_{2}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})$
SERIES D TANCOITE, orth/Pbcb. Structure consists of chains of corner-sharing AIO_{6} octahedra and PO_{4} tetrahedra // [001] which are cross-linked by Na and Li atoms.

MBGDA
SERIES E KAMPELITE, orth/Pnma. Structure is based upon complex [$\left.\mathrm{MgBa}_{2} \mathrm{Sc}_{4}\left(\mathrm{PO}_{4}\right)_{6}\right]$ layers consisting of the $\mathrm{Ba}-\mathrm{PO}_{4}$ zig-zag sheet inserted between two $\mathrm{Mg}-\mathrm{Sc}-\mathrm{PO}_{4}$ sheets.

MBGEA
KAMPELITE

$$
\mathrm{Ba}_{3} \mathrm{Mg}_{1.5} \mathrm{Sc}_{4}\left(\mathrm{PO}_{4}\right)_{16}(\mathrm{OH})_{3} .4 \mathrm{H}_{2} \mathrm{O}
$$

SERIES A THADEUITE-JAGOWERITE SERIES, orth/C2221. The structure is based on three basic features: helical chains of $\mathbf{M}(3)$ octahedra parallel to c ; slightly distorted chains composed of alternating $\mathbf{M}(1)$ and $\mathbf{M}(2)$ octahedra parallel to a; and insular phosphate tetrahedra, which cross link the $M(3)$ chains to form a network of channels parallel to a into which the $M(1)-\mathrm{M}(2)$ chains fit. The basic polyhedra is $\left[\mathrm{MO}_{4}(\mathrm{OH})_{2}\right]^{8}$, with the cation compositions: $\mathbf{M}(1)=\mathbf{M g} ; \mathbf{M}(2)=\mathbf{C a M n} ; \mathbf{M}(3)=\mathbf{M g F e M n}$. Structure consists of edge-sharing pairs of Al octahedra that are corner-linked to eight P tetrahedra, forming a framework that accommodates Ba polyhedra. In thadeuite, helical chains of edge-sharing M octahedra // [001] are cross-linked by P tetrahedra to form a framework with a network of channels // [100] which contain distorted chains of edge-sharing Mg and Ca octahedra.

MBHAA	THADEUITE	$\mathrm{Mg}(\mathrm{Ca}, \mathrm{Mn})(\mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn})_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}, \mathrm{F})_{2}$
MBHAB	JAGOWERITE	$\mathrm{BaAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2}$

TILASITE SERIES, mon/C2/c. The structure is a framework and consists of infinite chains of TiO_{6} octahedra linked by their corners; between these chains and parallel to the $\underline{\mathbf{c}}$ axis run columns of distorted calcium prisms. Si tetrahedra link the Ti chains in the (010) plane. The lacroixite structure is isostructural and consists of chains of corner-sharing $\mathrm{AIO}_{4} \mathrm{~F}_{2}$ octahedra cross-linked by PO_{4} tetrahedra. The resulting large cavities in the framework are filled with Na atoms in 7 -fold coordination. The octahedral chains are kinked. Isotypes of titanite structure.

MBHBA
MBHBB
MBHBC
MBHBD
MBHBE
MBHBF
MBHBG
MBHBH
SERIES C BJAREBYITE SERIES, mon/P2 ${ }_{1} / \mathrm{m}$. The structure is based on an octahedral chain of composition $\left[\mathrm{Al}_{2} \mathrm{O}_{6}(\mathrm{OH})_{3}\right]$ which runs parallel to the b axis and consists of pairs of edge-sharing octahedra, each such edge-sharing pair in turn sharing a corner with another such pair. Similar chains occur in carminite and palermoite. Perloffite is isostructural with other members of the bjarebyite group. Edge-linked $\left[\mathrm{M}_{22} \mathrm{O}_{6}(\mathrm{OH})_{4}\right]$ dimmers link via corners to form chains along [010]. Chains are decorated with PO_{4} tetrahedra and link in the a direction via $\left[\mathrm{M1O}_{5}(\mathrm{OH})\right.$] octahedra and (Ba, Sr) atoms to form a complex framework

MBHCA
MBHCB
MBHCC
MBHCD
MBHCE
MBHCF
SERIES D PALERMOITE-BERTOSSAITE SERIES, orth/Imcb. The structure is based on an M-O octahedral chain consisting of edge-linked dimer which is corner-linked. The carminite structure consists of Fe octahedra connected to each other by an edge at the mirror plane and by a corner at a two fold axis. The octahedra extend unbroken parallel to the z-direction in projection on (010) and are connected together in the x-direction by arsenate tetrahedra. Coordination about the lead atoms is eight fold. The structure is very similar to that of brackenbuschite. Structure consists of chains of edge- and corner-sharing $\mathrm{AlO}_{4}(\mathrm{OH})_{2}$ octahedra // [100] which are linked by P tetrahedra to form slabs // (010). The large cations are accommodated in distorted cubic cavities in the framework.

MBHDA

MBHDB	BERTOSSAITE	$\mathrm{Ca}(\mathrm{Li}, \mathrm{Na})_{2} \mathrm{Al}_{4}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH}, \mathrm{F})_{4}$
MBHDC	NATROPALERMOITE	$\mathrm{Na}_{2} \mathrm{SrAl}_{4}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{4}$
MBHDD	PICCOLIITE	$\mathrm{NaCaMn}^{3+}{ }_{2}\left(\mathrm{AsO}_{4}\right)_{2} \mathrm{O}(\mathrm{OH})$

MBHEA
MBHEB
MBHEC

SERIES F ADELITE SERIES, orth/P2 $\mathbf{1}_{1} \mathbf{2}_{1}$. The structure consists of edge-sharing M octahedra forming linear chains // [001] that are linked by corner-sharing As tetrahedra, producing a framework with cavities that accommodate the large cations. In cobaltaustinite, the CoO_{6} octahedra share edges to form chains extending // (001), which are cross linked by Ca^{2+} ions and by sharing verticies with isolated AsO_{4} tetrahedra. The Ca^{2+} ions are situated in square andtiprisms formed by eight \mathbf{O} atoms.

MBHFA
MBHFB
MBHFC
MBHFD
MBHFE
MBHFF
MBHFG
MBHFH
MBHFI
MBHFJ
MBHFK

SERIES G DESCLOIZITE SERIES, orth/Pnam or Pna21. Structure consists of chains of edge-sharing M octahedra // [010] are cross-linked by V tetrahedra, forming an open framework that accommodates the large Pb atoms.

MBHGA
MBHGB
MBHGC
MBHGD
MBHGE

CECHITE
DESCLOIZITE
MOTTRAMITE
PYROBELONITE
KHORIXASITE

$$
\begin{aligned}
& \mathrm{Pb}(\mathrm{Fe}, \mathrm{Mn})(\mathrm{VO} 4)(\mathrm{OH}) \\
& \mathrm{PbZn}\left(\mathrm{VO}_{4}\right)(\mathrm{OH}) \\
& \mathrm{PbCu}\left(\mathrm{VO}_{4}\right)(\mathrm{OH}) \\
& \mathrm{PbMn}\left(\mathrm{VO}_{4}\right)(\mathrm{OH}) \\
& \left(\mathrm{BiO}_{0.67} \square_{0.33}\right) \mathrm{Cu}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})
\end{aligned}
$$

SERIES H BAYLDONITE-LENINGRADITE SERIES, mon/C2/c. Structure consists of chains of edge-sharing Cu octahedra // [010] which are connected into gibbsite-like sheets // (001) of 6-membered rings decorated by arsenate tetrahedra on both sides of the sheets; these tetrahedra share three of their corners with octahedra in the sheets; the sheets are linked by Pb ions and H -bonding. In liningradite, the structure contains one symmetrically unique Pb position coordinated by four \mathbf{O} and four Cl atoms. The V^{5+} cation is tetrahedrally coordinated by four O atoms. There are two symmetrically independent Cu sites in distorted octahedral [$40=2 \mathrm{Cl}$] coordination. The structure can be described in terms of fundamental chains consisting of corner-sharing CuO_{4} squares and V tetrahedra. The chains are // to the caxis and are linked into a three-dimensional framework with elliptical channels occupied by the Pb cations and Cl anions. Structural description of leningradite is given in CM07-445.

MBHHA
BAYLDONITE
$\mathrm{Cu}_{3} \mathrm{PbO}\left(\mathrm{HOAsO}_{3}\right)_{2}(\mathrm{OH})_{2}$
MBHHB

$$
\mathrm{BaCu}_{3}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})_{2} \quad \mathrm{C} 2 / \mathrm{m}
$$

MBHHC	LENINGRADITE	$\mathrm{PbCu}_{3}\left(\mathrm{VO}_{4}\right)_{2} \mathrm{Cl}_{2}$
	orth/lbam	
SERIES I	RUDABANYAITE, iso/	
MBHIA	RUDABANYAITE	$\left(\mathrm{Ag}_{2} \mathrm{Hg}_{2}\right)\left(\mathrm{AsO}_{4}\right) \mathrm{Cl}$
TYPE J	Structures With Medium-sized and Large Cations, $(\mathbf{O H}$, etc. $): \mathbf{R O}_{4}=\mathbf{1 . 5 : 1}$	
	No examples known.	

TYPE K Structures With Medium-sized and Large Cations, (OH , etc. $): \mathrm{RO}_{4}=\mathbf{2 : 1}$, 2.5:1.

SERIES A BRAZILIANITE, mon/P2 $/$ n. Structure consists of chains $/ /[010]$ of edge-sharing $\mathrm{Al}(\mathrm{O}, \mathrm{OH})_{6}$ octahedra linked by PO_{4} tetrahedra to form a framework with Na in the cavities.

BRAZILIANITE

$$
\mathrm{NaAl}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4}
$$

SERIES B	MEDENBACHITE SERIES, tric/P1. Structure consists of chains of edge-sharing octahedra of $\left[\mathrm{Fe}^{3+} \mathrm{O}_{4}(\mathrm{OH})_{2}\right]$ and $\left[\left(\mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}\right) \mathrm{O}_{4}(\mathrm{OH})_{4}\right]$ running along [010]. These chains of octahedra are corner linked by AsO_{4} tetrahedra to form $\left[\mathrm{Fe}^{3+}(\mathrm{Cu}, \mathrm{Fe})(\mathrm{OH})_{2}\left(\mathrm{AsO}_{4}\right)\right]$ layers parallel to (001). The irregular $\mathrm{Bi}^{3+} \mathrm{O}_{7}$ coordination polyhedra are joined by 05 atoms to form zigzag bands arranged in (001) and running parallel to [100]. These connect the octahedra layers across (001).
MBKBA	MEDENBACHITE $\quad \mathrm{Bi}_{2} \mathrm{Fe}(\mathrm{Cu}, \mathrm{Fe})(\mathrm{O}, \mathrm{OH})_{2}(\mathrm{OH})_{2}\left(\mathrm{AsO}_{4}\right)_{2}$
MBKBB	NEUSTÄDTELITE $\quad \mathrm{Bi}_{2} \mathrm{Fe}^{3+}{ }_{2}(\mathrm{O}, \mathrm{OH})_{2}(\mathrm{OH})_{2}\left(\mathrm{AsO}_{4}\right)_{2}$
MBKBC	COBALTNEUSTÄDTELITE $\quad \mathrm{Bi}_{2} \mathrm{Fe}(\mathrm{Co}, \mathrm{Fe})(\mathrm{O}, \mathrm{OH})_{2}(\mathrm{OH})_{2}\left(\mathrm{AsO}_{4}\right)_{2}$
SERIES C	CURETONITE, mon/P2 ${ }_{1} / \mathrm{n}$. The structure consists one tetrahedrally coordinated P position by four oxygens and two unique Al positions octahedrally coordinated by four oxygens and two hydroxyls and four oxygens and two fluorines, respectively. These octahedra and tetrahedra link by sharing corners to form a sheet of general stoichiometry $M\left(\mathrm{TO}_{4}\right) \phi_{2}$ that constitutes the structural unit of the mineral. The sheets are linked by tenfold-coordinated interstitial Ba atoms. Structure consists of chains of corner-sharing (AI,Ti) octahedra // [100] which are linked by P tetrahedra to form sheets // (010); the sheets are connected by Ba polyhedra.

MBKEB

$$
\begin{aligned}
& \mathrm{Pb}_{2} \mathrm{ZnFe}^{3+}{ }_{2}\left(\mathrm{Fe}^{3+}{ }_{2.8} \mathrm{Zn}_{1.2}\right)\left(\mathrm{AsO}_{4}\right)_{4}(\mathrm{OH})_{8}\left[(\mathrm{OH})_{1.2} \mathrm{O}_{0.8}\right] \\
& \mathrm{Sr}_{2} \mathrm{Fe}^{2+}(\mathrm{Fe}, \mathrm{Mg})_{2} \mathrm{Al}_{4}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{10} \quad \text { tric } / \mathrm{P} \underline{1}
\end{aligned}
$$

LULZACITE

SERIES F IANGREYITE, trig/P321. The structure consists of blocks of the crandallite-type structure that are interconnected along c via corner-sharing of crandallite-block PO_{4} tetrahedra with $\left.\mathrm{AlO}_{2}() \mathrm{H}\right)_{3}$ bipyramids. This linkage generates large channels along [110] bounded by 10 -membered rings of
octahedra, tetrahedra and trigonal bipyramids, that are o ccupied by Ca and water molecules. The mineral is structurally related to perhamite group.

MBKFA IANGREYITE $\mathrm{Ca}_{2} \mathrm{Al}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{2}(\mathrm{OH}, \mathrm{F})_{15 .} 8 \mathrm{H}_{2} \mathrm{O}$

SERIES G LANGBANSHYTTANITE, Tric/P1. Structure consists of edge-sharing $\mathrm{MnO}_{2}(\mathrm{OH})_{4}$ octahedra forming zig-zag columns that are linked by isolated AsO_{4} tetrahedra. Pb cations have six-fold coordination and are located between the AsO_{4} tetrahedra. Isolated $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra are located in the interblock space.

TYPE L Structures With Medium-sized and Large cations, (OH, etc.): $\mathrm{RO}_{4}=3: 1$.

SERIES A CRANDALLITE SERIES, trig/R3m. The hexagonal structure consists of corner-sharing AI octahedra which are linked into trigonal and hexagonal rings to form sheets perpendicular to the caxis. Ca ions, surrounded by 12 oxygen and hydroxyl ions, lie in large cavities between the sheets. Each phosphate tetrahedron shares three corners with three Al octahedra forming a trigonal ring in the sheet. The unshared corner points away from the trigonal hole towards the adjacent sheet to which it is \mathbf{H} bonded. In pattesonite, the unique crystal structure consists of an interrupted threedimensional framework based on intersecting zig-zag chains of corner-sharing FeO_{6} octahedra, linked by P tetrahedra. The [8]-coordinated Pb atom is located within elliptical [100] channels. Members of this group have the alunite structure type. The structure of pattersonite consists of an interrupted three-dimensional framework based on intersecting zig-zag chains of corner-sharing FeO_{6} octahedra, linked by phosphate tetrahedra. The 8-coordinated Pb atom is locagted wihin elliptical [100] channels the asymmetric unit contains one unique Pb , th ree Fe , one P , seven O and one mixed $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.5}(\mathrm{OH})_{0.5}\right.$] ligand with a calculated bond-valence of 0.75 and 3.5 H atoms.

MBLAA	ARSENOCRANDALLITE	$(\mathrm{Ca}, \mathrm{Sr}) \mathrm{Al}_{3}\left((\mathrm{As}, \mathrm{P}) \mathrm{O}_{4}\right)_{2}(\mathrm{OH})_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
MBLAB	ARSENOFLORENCITE-(Ce)	$(\mathrm{Ce}, \mathrm{La}) \mathrm{Al}_{3}\left((\mathrm{As}, \mathrm{P}) \mathrm{O}_{4}\right)_{2}(\mathrm{OH})_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
MBLAC	ARSENOFLORENCITE-(La)	$(\mathrm{La}, \mathrm{Ce}) \mathrm{Al}_{3}\left((\mathrm{As}, \mathrm{P}) \mathrm{O}_{4}\right)_{2}(\mathrm{OH})_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
MBLAD	open	
MBLAE	ARSENOGORCEIXITE	$\mathrm{BaAl}_{3}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{AsO}_{3} \mathrm{OH}\right)(\mathrm{OH})_{6}$
MBLAF	ARSENOGOYAZITE	$(\mathrm{Sr}, \mathrm{Ca}, \mathrm{Ba}) \mathrm{Al}_{3}\left((\mathrm{As}, \mathrm{P}) \mathrm{O}_{4}\right)_{2}(\mathrm{OH})_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
MBLAG	CRANDALLITE	$\mathrm{CaAl}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
MBLAH	DUSSERTITE	$\mathrm{BaFe}_{3}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{5}$
MBLAI	EYLETTERSITE	$(\mathrm{Th}, \mathrm{Pb})_{1-\mathrm{X}} \mathrm{Al}_{3}\left(\mathrm{PO}_{4}, \mathrm{SiO}_{4}\right)_{2}(\mathrm{OH})_{6}$
MBLAJ	FLORENCITE-(Ce)	$\mathrm{CeAl}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6}$
MBLAK	FLORENCITE-(La)	$(\mathrm{La}, \mathrm{Ce}) \mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6}$
MBLAL	FLORENCITE-(Nd)	$(\mathrm{Nd}, \mathrm{Ce}) \mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6}$
MBLAM	GORECEIXITE	$\mathrm{BaAl}_{3}\left(\mathrm{PO}_{4}\right)\left(\mathrm{PO}_{3} \mathrm{OH}\right)(\mathrm{OH})_{6}$
MBLAN	GOYAZITE	$(\mathrm{Sr}, \mathrm{Ca}, \mathrm{Ba}) \mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
MBLAO	BENAUITE	$\mathrm{HSrFe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6}$
MBLAP	PHILIPSBORNITE	$\mathrm{PbAl}_{3}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
MBLAQ	PLUMBOGUMMITE	$\mathrm{PbAl}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{5} \cdot \mathrm{H}_{2} \mathrm{O}$
MBLAR	WAYLANDITE	$(\mathrm{Bi}, \mathrm{Ca}) \mathrm{Al}_{3}\left(\mathrm{PO}_{4}, \mathrm{SiO}_{4}\right)_{2}(\mathrm{OH})_{6}$
MBLAS	ZAIRITE	$\mathrm{Bi}(\mathrm{Fe}, \mathrm{Al})_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6}$
MBLAT	SEGNITITE	$\mathrm{PbFe}_{3}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{6}$
MBLAU	SPRINGCREEKITE	$\mathrm{BaV}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{6}$
MBLAV	GRAULICHITE-(Ce)	$(\mathrm{Ce}, \mathrm{La}, \mathrm{Nd}, \mathrm{Ba})(\mathrm{Fe}, \mathrm{Al})_{3}\left[(\mathrm{As}, \mathrm{Al}) \mathrm{O}_{4}\right]_{2}(\mathrm{OH})_{6}$
MBLAW	PATTERSONITE	$\mathrm{PbFe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4}\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.5}(\mathrm{OH})_{0.5}\right]_{2}$

MBLAX	KINTOREITE	$\mathrm{PbFe}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{6}$
MBLAY	KOLITSCHITE	\left.${\mathrm{Pb}\left[\mathrm{Zn}_{0.25-0.5} \square_{0.75-0.5}\right] \mathrm{Fe}_{3} \mathrm{H}(\mathrm{AsO}}_{4}\right)_{2}(\mathrm{OH})_{6}$
MBLAZ	FLORENCITE-(Sm)	$\left(\mathrm{Sm},{\mathrm{Nd}) \mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6}}_{\text {MBLA27 }}\right.$
MBLA28	ARSENOFLORENCITE-(La)	$\mathrm{LaAl}_{3}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{6}$
GALLOPLUMBOGUMMITE	$\mathrm{Pb}(\mathrm{Ga}, \mathrm{Al}, \mathrm{Ge})_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6}$	

SERIES B VIITANIEMIITE, mon/P2 ${ }_{1} / \mathrm{m}$. Structure consists of alternating chains of corner-sharing Al octahedra and edge-sharing (Ca, Mn) octahedra // [010] which are connected by F atoms to form sheets // (010). The sheets are linked by P tetrahedra and Na polyhedra.

MBLBA

SERIES C

VIITANIEMIITE
$\mathrm{Na}(\mathrm{Ca}, \mathrm{Mn}) \mathrm{Al}\left[\mathrm{PO}_{4}\right](\mathrm{F}, \mathrm{OH})_{3}$
DUGGANITE SERIES. Trig/P321. Structure consists of TeO_{6} octahedra and PbO_{8} disphenoids sharing edges to form open sheets // (0001); these sheets alternate with open sheets of corner-sharing As and Zn tetrahedra; the sheets are linked by sharing corners of the various polyhedra. The structure of joelbruggerite, the Sb analog of dugganite, is composed of heteropolyhedral sheets of edgesharing (Sb, Te) O_{6} octahedra and PbO_{8} disphenoids, oriented // to (001). The sheets are cross-linked by AsO_{4} and ZnO_{4} tetrahedra, which share corners to form an interliknked, two- and three-connected two-dimensional net // to (001)

MBLCA
MBLCB
MBLCC
MBLCD

SERIES D
MBLDA

TYPE M Structures With Medium-sized and Large Cations, (OH, etc.): $\mathrm{RO}_{4}=4: 1$

SERIES A RETZIAN SERIES, orth/Pban. The structure consists of zigzag chains of edge-sharing Mn octahedra // [100] sharing edges with REE square antiprisms to form sheets // (001); the sheets are linked by As tetrahedra which are located over vacant octahedral sites in the sheets.

MBMAA
RETZIAN-(Ce)
$\mathrm{Mn}_{2} \mathrm{Ce}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{4}$
MBMAB RETZIAN-(La)
MBMAC

SERIES B

MBMCA

DUGGANITE
$\mathrm{Pb}_{3} \mathrm{TeZn}_{3}\left[\mathrm{O}_{6} /\left(\mathrm{AsO}_{4}\right)_{2}\right]$
$\mathrm{Pb}_{3} \mathrm{TeZn}_{3}\left[\mathrm{O}_{6} /\left(\mathrm{PO}_{4}\right)_{2}\right]$
$\mathrm{Pb}_{3} \mathrm{TeZn}_{3}\left[\mathrm{O}_{6} /\left(\mathrm{VO}_{4}\right)_{2}\right]$
$\mathrm{Pb}_{3} \mathrm{SbZn}_{3}\left[\mathrm{O}_{6}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}\right]$

ARTSMITHITE, mon/C2/c. Structure consists of-pending Canadian Mineralogist (2003): 41:721-725.

$$
\mathrm{Hg}^{1+}{ }_{4} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{2-\mathrm{x}}(\mathrm{OH})_{1-3 x}
$$

$(\mathrm{Mn}, \mathrm{Mg})_{2}(\mathrm{La}, \mathrm{Ce}, \mathrm{Nd})\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{4}$
$\mathrm{Mn}_{2}(\mathrm{Nd}, \mathrm{Ce}, \mathrm{La})\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{4}$

PAULKELLERITE-BRENDELITE SERIES, mon/C2/c. Structure consists of zigzag chains of alternating corner-sharing Fe octahedra and P tetrahedra // [001] which are arranged in sheets // (100); these sheets are interspersed with sheets of Bi polyhedra.

MBMBA
MBMBB

SERIES C
BRENDELITE
$(\mathrm{Bi}, \mathrm{Pb})_{2} \mathrm{Fe}(\mathrm{O}, \mathrm{OH})_{3} \mathrm{PO}_{4}$
PAULKELLERITE

$$
\mathrm{Bi}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right) \mathrm{O}_{2}(\mathrm{OH})_{2}
$$

WATERHOUSEITE, mon/P2 ${ }_{1} / \mathrm{c}$. Structure is characterized by a dense, complex framework of $\mathrm{Mn}(\mathrm{O}, \mathrm{OH})_{6}$ octahedra and phosphate tetrahedra, which are linked by both edges and corners. Two different subunits can be recognized in the structure: arsenoclasite-type strips of edge-sharing octahedra (fragments of brucite-pyrochroite-type strips of octahedra) and finite chains of edgesharing octahedra (fragments of infinite rutile-type chains). The phosphate tetrahedra provide a connection between the strips and the chains.

$$
\mathrm{Mn}_{7}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{8} \quad \mathrm{CM} 05-1401 \text { (str.) }
$$ octahedra and PO tetrahedra along the a axis. The chains are joined into a framework via bonds to four distinct Ca atoms. Ca atoms are also linked by sharing isolated F atoms and water molecules. The double-chain motif int he structure is distinct from that in any other known phosphate.

$$
\mathrm{Ca}_{4} \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{~F}_{8} \cdot 5 \mathrm{H}_{2} \mathrm{O}
$$

Structures with only Large Cations, (OH), etc. $): \mathrm{RO}_{4}=0.33: 1$

FLUOR SERIES, trig/P6 $/ \mathrm{m}$. Structure consists of Ca polyhedra sharing faces to form chains // [0001]; the chains are linked into a hexagonal array by sharing edges and corners with P tetrahedra. F and OH ions are located in wide hexagonal channels // [0001].

MBNAA
MBNAB
MBNAC
MBNAD
MBNAE
MBNAF
MBNAG
MBNAH
MBNAI
MBNAJ
MBNAK
MBNAL
MBNAM
MBNAN
MBNAO

$$
\begin{aligned}
& (\mathrm{Sr}, \mathrm{Ce}, \mathrm{Na}, \mathrm{Ca})_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH}) \\
& (\mathrm{Y}, \mathrm{Ca}, \mathrm{Ln})_{5}\left[(\mathrm{Si}, \mathrm{P}) \mathrm{O}_{4}\right]_{3} \mathrm{~F} \\
& (\mathrm{Sr}, \mathrm{Ca})_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F} \\
& \mathrm{NaNdCa}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F} \\
& \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F} \\
& \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH}) \\
& \mathrm{Ca}_{5}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH}) \\
& (\mathrm{Sr}, \mathrm{Ca})_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH}, \mathrm{~F}) \\
& \mathrm{Ca}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{~F} \\
& \mathrm{Sr}_{3} \mathrm{Na}(\mathrm{La}, \mathrm{Ce})\left[\mathrm{PO}_{4}\right]_{3}(\mathrm{~F}, \mathrm{OH}) \\
& \mathrm{NaCa}_{2} \mathrm{SrCe}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F} \\
& (\mathrm{Ca}, \mathrm{Sr}, \mathrm{Na}, \mathrm{REE})_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F} \\
& (\mathrm{Sr}, \mathrm{Ca})_{2} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F} \\
& \mathrm{Mn}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl} \\
& \mathrm{Ca}_{5}\left(\mathrm{VO}_{4}\right)_{3} \mathrm{~F}
\end{aligned}
$$

CHLORAPATITE-PYROMORPHITE SERIES, hex/P6 ${ }_{3} / \mathrm{m}$. Structure same as fluorapatite series. Parafiniukite, ideally $\mathrm{Ca} 2 \mathrm{Mn} 3(\mathrm{PO} 4) 3 \mathrm{CI}$, is a new apatite-supergroup mineral from the Szklary pegmatite, Lower Silesia, Poland. It occurs as anhedral grains, up to $\mathbf{2 5 0} \mu \mathrm{m}$ in size, dark olive green in colour, embedded in a mixture of Mn-oxides and smectites around beusite. It has a vitreous luster, and it is brittle with irregular, uneven fracture. The calculated density is $3.614 \mathrm{~g} \cdot \mathrm{~cm}-3$. Parafiniukite is hexagonal, space group P63/m, with unit-cell parameters a = 9.4900(6), c=6.4777(5) \AA, $\mathrm{V}=$ $505.22(5) \AA 3, Z=2$. The eight strongest reflections in the calculated X-ray powder diffraction pattern of parafiniukite are [d in Á(I) hkl]: 3.239 (39) 002; 2.801 (55) 211; 2.801 (76) 121; 2.740 (100) 300; 2.675 (50) 112; 2.544 (69) 202; 1.914 (31) 222; and 1.864 (22) 132. Chemical analysis by an electron microprobe gave (in wt\%) P2O5 39.20, MgO 0.19, CaO 24.14, MnO 31.19, FeO 2.95, Na2O 0.05, F 0.39, $\mathrm{Cl} 3.13, \mathrm{H} 2 \mathrm{O}$ (calc) $0.68, \mathrm{O}=(\mathrm{Cl}, \mathrm{F})-0.87$, sum 101.05 . The resulting empirical formula on the basis of 13 anions per formula unit is (Mn 2.39 Ca 2.34 Fe 0.22 Mg 0.03 NaO 0.01) $\sum 4.99 \mathrm{P} 3.00 \mathrm{O} 12$ [$\left.\mathrm{ClO} 0.48(\mathrm{OH}) 0.41 \mathrm{~F} 0.11\right]$. The crystal structure of parafiniukite was refined to an R1 = 0.0463 for 320 independent reflections with $\mathrm{Fo}>\mathbf{4 \sigma}(\mathrm{Fo})$ and 41 refined parameters. Parafiniukite is isotypic with apatites. Manganese is the dominant cation at the $\mathbf{M}(2)$ site, and Ca is the dominant cation at the $\mathrm{M}(1)$ site.

MBNBB	CHLORAPATITE	$\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$
MBNBC	GORYAINOVITE	$\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$
MBNBD	HEDYPHANE	$\mathrm{Pb}_{3} \mathrm{Ca}_{2}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$
MBNBE	MIMETITE	$\mathrm{Pb}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$
MBNBF	MORELANDITE	$(\mathrm{Ba}, \mathrm{Ca}, \mathrm{Pb})_{5}\left(\mathrm{AsO}_{4}, \mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$
MBNBG	PYROMORPHITE	$\mathrm{Pb}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$
MBNBH	TURNEAUREITE	$\mathrm{Ca}_{5}\left(\mathrm{As}, \mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$
MBNBI	VANADINITE	$\mathrm{Pb}_{5}\left(\mathrm{VO}_{4}\right)_{3} \mathrm{Cl}$
MBNBJ	KUANNERSUITE-(Ce)	$\mathrm{Ba}_{3} \mathrm{NaCe}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{~F}, \mathrm{Cl})$
MBNBK	PHOSPHOHEDYPHANE	$\mathrm{Pb}_{3} \mathrm{Ca}_{2}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$
MBNBL	FLUORPHOSPHOHEDYPHANE	$\mathrm{Ca}_{2} \mathrm{~Pb}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$
MBNBM	VANACKERITE	$\mathrm{Pb}_{4} \mathrm{Cd}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{Cl}, \mathrm{OH})$
MBNBN	HYDROXYLPYROMORPHITE	$\mathrm{Pb}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})$
MBNBO	PARAFINIUKITE	$\mathrm{Ca}_{2} \mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{Cl}$
MBNBP	HYDROXYLHEDYPHANE	$\mathrm{Ca}_{2} \mathrm{~Pb}_{3}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})$

SERIES C ARCTITE, trig/R3m. Structure consists of three different layers // (0001). (a) Ba icosohedra linked by P tetrahedra. (b) triplets of edge-sharing Ca polyhedra with \mathbf{P} tetrahedra and F atoms; and (c) facesharing triplets of Na polyhedra. The layers are linked by \mathbf{P} tetrahedra.

MBNCA	ARCTITE	$\mathrm{Na}_{5} \mathrm{BaCa}_{7}\left[\mathrm{~F}_{3} /\left(\mathrm{PO}_{4}\right)_{6}\right]$
MBNCB	ARAVAITE	$\mathrm{Ba}_{2} \mathrm{Ca}_{18}\left(\mathrm{SiO}_{4}\right)_{6}\left(\mathrm{PO}_{4}\right)^{3}\left(\mathrm{CO}^{3}\right) \mathrm{F}^{3} \mathrm{O}$

TYPE $0 \quad$ Structures With only Large Cations, ($\mathrm{OH}<$ etc.): RO4 >/=1:1
SERIES A NACAPHITE, orth/Cmma or C2ma. Structure consists of columns of edge-sharing Na octahedra and Ca polyhedra // \{100] which are linked by phosphate tetrahedra that share edges with the $\mathbf{C a}$ polyhedra.

MBOAA
NACAPHITE
$\mathrm{Na}_{2} \mathrm{CaPO}_{4} \mathrm{~F}$
SERIES B SCHUMACHERITE SERIES, tric/P1. The structure consists of clusters of six Bi atoms that are connected by two oxygens and two OH groups. These $\mathrm{Bi}_{6} \mathrm{O}_{2}(\mathrm{OH})_{2}$ groups are linked by the AsO_{4} tetrahedra to form a framework. Structure consists of clusters of six edge- and corner-sharing $\mathrm{Bi}(\mathrm{O}, \mathrm{OH})_{4}$ square pyramids which are linked into a framework by P , As, or V tetrahedra.

MBOBA	SCHUMACHERITE	$\mathrm{Bi}_{3}\left((\mathrm{~V}, \mathrm{As}, \mathrm{P}) \mathrm{O}_{4}\right)_{2} \mathrm{O}(\mathrm{OH})$
MBOBB	PETITJEANITE	$\mathrm{Bi}_{3}\left((\mathrm{P}, \mathrm{V}, \mathrm{As}) \mathrm{O}_{4}\right)_{2} \mathrm{O}(\mathrm{OH})$
MBOBC	PREISINGERITE	$\mathrm{Bi}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \mathrm{O}(\mathrm{OH})$

SERIES C ATELESTITE SERIES, mon/P2 ${ }_{1} / \mathrm{a}$. Structure consists of clusters of six edge- and corner-sharing $\mathrm{Bi}(\mathrm{O}, \mathrm{OH})_{4}$ square pyramids which are linked into a framework by P , As or V tetrahedra. Structures similar to preisingerite.

MBOCA
MBOCB
ATELESTITE

$$
\begin{aligned}
& \mathrm{Bi}_{8}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{O}_{5}(\mathrm{OH})_{5} \\
& \mathrm{Bi}_{2} \mathrm{O}(\mathrm{OH})\left(\mathrm{PO}_{4}\right) \\
& \mathrm{Bi}_{2} \mathrm{O}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)
\end{aligned}
$$

SMRKOVECITE
MBOCC
HECHTSBERGITE

SERIES D SAHLINITE SERIES, mon/C2/c. Structure consist of double sheets // (010) consisting of two sheets of $\mathrm{Pb}(\mathrm{O}, \mathrm{Cl})_{5-8}$ polyhedra connected by V tetrahedra which are linked to adjacent double sheets by a layer of Cl atoms. The structure is related to litharge.The main structure unit is composed of the $\left[\mathrm{Pb}_{14}\left(\mathrm{VO}_{4}\right)_{2} \mathrm{O}_{9}\right]^{4+}$ double sheet, and adjacent sheets are linked by Cl anions. The structure unit consists of two sheets of the tetragonal PbO structure in which $1 / 8$ of the Pb positions are replaced by V , with the addition of two apical O anions and the omission of one O anion within the $\mathrm{Pb}-\mathrm{O}$ sheet.

MCADA	GAINESITE	$\mathrm{Na}_{2} \mathrm{Zr}_{2}\left[\mathrm{Be}\left(\mathrm{PO}_{4}\right)_{4}\right]$
MCADB	MCCRILLISITE	$\mathrm{NaCsZr} \mathrm{r}_{2}(\mathrm{Be}, \mathrm{Li})\left(\mathrm{PO}_{4}\right)_{4} \cdot 1-2 \mathrm{H}_{2} \mathrm{O}$
MCADC	SELWYNITE	$\mathrm{NaKSr} 2\left[(\mathrm{Be}, \mathrm{Al})\left(\mathrm{PO}_{4}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
SERIES E	PAHASAPAITE, cub/I23. The structure is based upon a three-dimensional beryllophosphate tetrahedral framework, which may be visualized as an array of truncated cubo-octahedra (α cages) linked together through flat octagonal prisms (double 8-rings). There are two indentical, interpenetrating systems of cages and prisms related to one another by the body-centering translation of the lattice. Access from the cages of one system to those of the other is through shared 6 -rings. Both polyhedra (cages and prisms) are strongly distorted, and the entire tetrahedral framework is a distorted form of the ideal zeolite rho framework. Structurally related to faujasite. The structure of wilancookite is based on zeolite-RHO cages. The tetrahedral framework is distorted and built by an array of truncated cube-octahedralc ages, linked together through octagonal prisms strongly distorted.	
MCAEA	PAHASAPAITE	$\mathrm{Li}_{8}(\mathrm{Ca}, \mathrm{Li}, \mathrm{K})_{10.5} \mathrm{Be}_{24}\left(\mathrm{PO}_{4}\right)_{24} 38 \mathrm{H}_{2} \mathrm{O}$
MCAEB	WILANCOOKITE	$(\mathrm{Ba}, \mathrm{K}, \mathrm{Na})_{8}(\mathrm{Ba}, \mathrm{Li}, \square)_{6} \mathrm{Be}_{24} \mathrm{P}_{24} \mathrm{O}_{96} .32 \mathrm{H}_{2} \mathrm{O}$

SERIES F HOPEITE SERIES, orth/Pnma. Structure consists of $\mathbf{Z n}$ tetrahedra and \mathbf{P} tetrahedra sharing corners to form sheets of 3 - and 4-membered rings // (010). In parahopeite, the two types of tetrahedra form sheets of 4 -membered rings // (010) alternating with sheets of $\mathrm{ZnO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ octahedra. The structure of davidlloydite consists of sheets of corner-sharing AsO_{4} and ZnO_{4} tetrahedra which are linked by $\mathrm{ZnO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ octahedra. The structure is related to parahopeite.

MCAFA	HOPEITE
MCAFB	PARAHOPEITE
MCAFC	ARSENOHOPEITE
MCAFD	DAVIDLLOYDITE
MCAFE	NIZAMOFFITE
MCAFF	REAPHOOKHILLITE

$$
\begin{array}{ll}
\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} & \text { orth/Pnma } \\
\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} & \text { tric/P1 } \\
\mathrm{Zn}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} & \\
\mathrm{Zn}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} & \text { tric/P1 } \\
\mathrm{Mn}^{2+} \mathrm{Zn}_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} & \text { orth/Pnma } \\
\mathrm{MgZn}_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} & \text { tric/P } \underline{1}
\end{array}
$$

SERIES G WARIKAHNITE, tric/P1. Structure consists of chains of edge-sharing Zn octahedra and ZnO_{4} tetrahedra // [101] which are linked to adjoining chains by edge-sharing and by As tetrahedra.

MCAGA
WARIKAHNITE

$$
\mathrm{Zn}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}
$$

SERIES H PHOSPHOPHYLLITE, mon/P21/c. Structure consists of puckered sheets // (100) of 3- and 4membered rings of corner-sharing Zn and P tetrahedra are interleaved with sheets of face-sharing Fe octahedra.

MCAHA
MCAHB
PHOSPHOPHYLLITE

$$
\begin{aligned}
& \mathrm{Zn}_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Zn} n_{2} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}) \cdot 3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

STEINMETZITE
$\mathrm{CaZn}{ }_{2}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \mathrm{mon} / \mathrm{Pc}$

SERIES I SCHOLZITE SERIES, orth/Pbc2 ${ }_{1}$. The structure consists of chains of ZnO_{4} tetrahedra parallel to [001]. These chains connected to other similar chains by isolated PO_{4} tetrahedra. The Ca atoms are surrounded by distorted oxygen octahedra which are formed by one oxygen from each of four different PO_{4} tetrahedra and two oxygens from two water molecules. The water molecules, in groups of four, occupy cages surrounded by two CaO_{6} octahedra and four PO_{4} tetrahedra. Structure consists of chains of corner-sharing Zn tetrahedra // [001] which are connected into slabs // (100) by insular P tetrahedra. The slabs are linked by Ca polyhedra.

$$
\mathrm{CaZn} 2\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{OH}_{2}\right)_{2}
$$

$$
\mathrm{CaZn}_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{OH}_{2}\right)_{2} \quad \mathrm{mon} / \mathrm{Cc} \text { or } \mathrm{C} 2 / \mathrm{c}
$$

SERIES J KEYITE SERIES, mon/I2/a. The structure consists of a complex arrangement of the atoms. There are two Cu^{2+} sites; $\mathrm{Cu}(1)$ is octahedrally coordinated by four oxygen atoms and two $\mathrm{H}_{2} \mathrm{O}$ groups, and

MCAJA
MCAJB

SERIES K

MCAKA

SERIES A SERRABRANCAITE, mon/C2/c. Isostructural with Kieserite.
MCBAA

SERIES B
KEYITE
ERIKAPOHLITE

$$
\begin{aligned}
& \mathrm{Cu}_{3}^{2+}(\mathrm{Zn}, \mathrm{Cu})_{4} \mathrm{Cd}_{2}\left(\mathrm{AsO}_{4}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{Cu}_{3}^{2+}(\mathrm{Zn}, \mathrm{Cu})_{4} \mathrm{Ca}_{2}\left(\mathrm{AsO}_{4}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}
\end{aligned}
$$

PUSHCHAROVSKITE, tric/P1. Structure consists of edge- and corner-sharing Cu square dipyramids, Cu square pyramids and As tetrahedra forming thick sheets // (110); the sheets are linked by additional Cu square pyramids; water molecules are accommodated between the sheets.

$$
\mathrm{Cu}_{2}\left[\mathrm{AsO}_{3} \mathrm{OH}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)
$$

TYPE B \quad Structures with only Medium-sized cations, $\mathrm{RO}_{4}: \mathrm{H}_{2} \mathrm{O}=1: 1$.

SERRABRANCAITE

$$
\mathrm{MnPO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}
$$

HUREAULITE SERIES, mon/C2/c. Structure consists of five edge-sharing M octahedra forming
is exactly half-occupied by $\mathrm{Cu}^{2+} ; \mathrm{Cu}(2)$ is coordinated by four oxygen atoms in a square-planar arrangement. There is one Zn site, occupied by $\mathbf{Z n}$ and minor Cu , and octahedrally coordinated by six oxygen atoms. There is one Cd site occupied dominantly by Cd and coordinated by six oxygen atoms in a trigonal prismatic arrangement. There are two As sites, both occupied by As ${ }^{5+}$ and tetrahedrally coordinated by oxygen atoms. The $\mathrm{Cu}(1) \varphi_{6}$ octahedra share corners to form a [Cuφ_{5}] chain in which only alternate octahedra are occupied. This chain is flanked by arsenate tetrahedra and CdO_{6} polyhedra to form a heteropolyhedral ribbon that extends along the \mathbf{c} axis. These ribbons are cross-linked by CuO_{4} groups into a sheet parallel to (100). These sheets alternate with parallel sheets of $\left[\mathrm{Zn}_{2} \mathrm{O}_{10}\right]$ octahedral dimers and arsenate tetrahedra to form a very complex heteropolyhedral framework. Structure consists of $\mathbf{C d}_{2}$ trigonal prisms, $\mathbf{Z n}_{4}$ octahedral dimmers, $\mathrm{CuO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedra and Cu square planes share corners with six As tetrahedra to form two kinds of sheets // (100): $\mathbf{Z n}_{2+2} \mathrm{As}_{4}$, and $\mathrm{Cd}_{2} \mathrm{CuCu}_{2} \mathrm{As}_{2}$; the sheets are cross-linked along [100], but form strong polyhedral chains // [001], and layers // (010) and (001). pentameters that are connected to other pentameters and to \mathbf{P} tetrahedra by corner sharing. Meisser, N., Plášil, J., Brunsperger, T., Lheur, C., Škoda, R. (2019): Giftgrubeite, CaMn2Ca2(AsO4)2(AsO3OH)2.4H2O, a new member of the hureaulite group from Sainte-Marie-auxMines, Haut-Rhin Department, Vosges, France. Journal of Geosciences, 64, 73-80.

Abstract:

Giftgrubeite, ideally $\mathrm{CaMn2Ca2(AsO4)2(AsO3OH)2.4H2O}$, is a new mineral occurring at the Giftgrube Mine, St Jacques vein, Rauenthal, Sainte-Marie-aux-Mines, Haut-Rhin Department, Grand Est, France and named after the type-locality. Giftgrubeite is mostly associated with Mn-bearing calcite, native arsenic, Iöllingite, and picropharmacolite. It is a recent secondary mineral, formed by alteration of the arsenical vein minerals after mining. Giftgrubeite occurs in colorless, rarely pearl white to pale yellow rosettes of brittle tabular crystals flattened on $\{100\}$ and up to 0.2 mm in size. Hardness (Mohs) is $31 / 2$, Dmeas is $3.23(2) \mathrm{g} \cdot \mathrm{cm}-3$, Dcalc is $3.24 \mathrm{~g} \cdot \mathrm{~cm}-3$. The new mineral is biaxial negative without pleochroism. Measured 2 V angle is $\sim 72^{\circ}$ and calculated 2 V angle is 75.1°; the refractive indices measured in white light are: $\alpha=1.630(2), \beta=1.640(2)$ and $\gamma=1.646(2)$. The most prominent Raman bands are at $902,885,864,851,824,797$ and $759 \mathbf{c m}-1$. The empirical chemical formula is (Ca3.04Mn1.30Mg0.38Fe0.28) $\mathbf{\Sigma 5 . 0 0}(\mathrm{AsO})^{2} 1.99(\mathrm{AsO3OH}) 2 \cdot 4 \mathrm{H} 2 \mathrm{O}$. Giftgrubeite is monoclinic, $\mathrm{C} 2 / \mathrm{c}, \mathrm{Z}=$ 4 , with $a=18.495(7) A, b=9.475(4) A, c=9.986(4) A, \beta=96.79(3)^{\circ}$ and $V=1737.7$ (12) $\AA 3$. The six strongest lines in the X-ray powder diffraction pattern are [d in \AA (I)(hkI)]: 3.33 (100)(-2 2 2), 3.18 (80)(2 2 2), 2.414 (60)(711), $4.80(50)(-311), 4.65(50)(-202)$ and $3.05(50)(113)$. The structure of giftgrubeite was solved from the crystal retrieved from the type specimen by the charge-flipping algorithm. Giftgrubeite contains a well-known structure type parent to the hureaulite group of minerals, which is based upon an octahedral edge-sharing pentamers of M2+-polyhedra, pentamers linked into a loose framework by sharing corners with octahedra in adjacent pentamers and further by AsO4 and AsO3OH tetrahedra. There are three distinct octahedral sites: M1, M2, and M3. In the case of giftgrubeite, two of the M sites were found to be fully occupied by Ca; namely M1 and M3. The M2 site was then found to contain Mg besides dominant Mn. Considering the refined site occupancies, the structural formula for giftgrubeite is $\mathrm{Ca3Mn1.30Mg0.70(AsO4)2(AsO3OH)2(H2O)4}$. Giftgrubeite is an ordered intermediate member between villyaellenite,
MnMn2Ca2(AsO3OH)2(AsO4)2.4H2O and sainfeldite, CaCa2Ca2(AsO4)2(AsO3OH)2.4H2O.
MCBBA

$$
\mathrm{Mn}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{AsO}_{4}\right)
$$

MCBBB	HUREAULITE	$\mathrm{Mn}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left[\mathrm{PO}_{3} \mathrm{OH}\right]_{2}\left[\mathrm{PO}_{4}\right]$
MCBBC	SAINFELDITE	$\mathrm{Ca}_{5}\left[\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2} /\left(\mathrm{AsO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$
MCBBD	IRHTEMITE	$\mathrm{Ca}_{4} \mathrm{Mg}\left[\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2} /\left(\mathrm{AsO}_{4}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
MCBBE	NYHOLMITE	$\mathrm{Ca}_{3} \mathrm{Zn}_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
MCBBF	MIGUELROMEROITE	$\mathrm{Mn}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{AsO}_{4}\right)$
MCBBG	CHONGITE	$\mathrm{Ca}_{3} \mathrm{Mg}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
MCBBH	GIFTGRUBEITE	$\mathrm{CaMn}_{2} \mathrm{Ca}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

SERIES C KRAUTITE-KORITNIGITE SERIES, tric/P1 or P1. Structure consists of edge-sharing chains of M octahedra // [101] which are linked into sheets // (010) by As tetrahedra. The structure of geminite consists of four unique Cu^{2+} sites, each coordinated by six anions in a [4+2\} distorted octahedral arrangement. There are four unique As^{5+} sites, each coordinated by three oxygen atoms and an OH group in a distorted tetrahedral arrangement; the three As-O distances are shorter than the As-OH distances in each tetrahedron. The $\mathrm{Cu}_{\varphi_{6}}$ polyhedra share edges to form [$\mathrm{Cu}_{\varphi_{4}}$] chains parallel to [010]; As φ_{4} tetrahedra cross-link these chains into sheets parallel to (001), and there are two symmetrical distinct but topologically identical sheets in the structure. These sheets are linked into a three-dimensional structure by a network of H bonds.

MCBCA	FLUCKITE	$\mathrm{CaMnH}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
MCBCB	YVONITE	$\mathrm{Cu}\left(\mathrm{AsO}_{3} \mathrm{OH}\right) 2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{Am} \mathrm{Min.98-383}$
MCBCC	KRAUTITE	$\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{3} \mathrm{OH}\right) \mathrm{mon} / \mathrm{P}_{2}{ }_{1}$
MCBCD	KORITNIGITE	$(\mathrm{Zn}, \mathrm{Co})\left[\mathrm{AsO}_{3}(\mathrm{OH})\right] \cdot \mathrm{H}_{2} \mathrm{O}$
MCBCE	COBALTKORITNIGITE	$(\mathrm{Co}, \mathrm{Zn})\left[\mathrm{AsO}_{3}(\mathrm{OH})\right] \cdot \mathrm{H}_{2} \mathrm{O}$
MCBCF	GEMINITE	$\mathrm{Cu}_{2}\left[\mathrm{AsO}_{3} \mathrm{OH}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)$
MCBCG	MAGNESIOKORITNIGITE	$\mathrm{Mg}\left(\mathrm{AsO}_{3} \mathrm{OH}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
MCBCH	MAGNESIOFLUCKITE	$\mathrm{CaMg}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$
SERIES D	CARDITE, orth/Cmcm.	

TYPE C Structures with only Medium-sized Cations, $\mathrm{RO}_{4}: \mathrm{H}_{2} \mathrm{O}=1: 1.5$.

SERIES A PHOSPHOFERRITE SERIES, orth/Pbna. Structure consists of trimers of edge-sharing (Fe,Mn) octahedra forming chains // [001] that are linked by phosphate tetrahedra to form a framework with water molecules in the cavities.

MCCAA
MCCAB
MCCAC
MCCAD
MCCAE
MCCAF

SERIES B KAATIALAITE SERIES, mon/P2 ${ }_{1}$ or P2 ${ }_{1} / \mathrm{m}$. Structure consists of Fe octahedra sharing corners with arsenate tetrahedra to form columns // [001] with interstitial zeolitic water molecules.

MCCBA
MCCBB
MCCBC
MCCBD

REDDINGITE
PHOSPHOFERRITE
GARYANSELLITE
KYZZHANOVSKITE LANDESITE

CORREIANEVESITE
$(\mathrm{Mn}, \mathrm{Fe})_{3}\left(\mathrm{PO}_{4}\right)_{2} 3 \mathrm{H}_{2} \mathrm{O}$
$(\mathrm{Fe}, \mathrm{Mn})_{3}\left(\mathrm{PO}_{4}\right)_{2} 3 \mathrm{H}_{2} \mathrm{O}$
$(\mathrm{Mg}, \mathrm{Fe})_{6}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MnFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$(\mathrm{Mn}, \mathrm{Mg})_{9} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{8}(\mathrm{OH})_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}^{2+} \mathrm{Mn}^{2+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}\left(\mathrm{HAsO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}\left(\mathrm{AsO}_{4}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}_{3}{ }^{3+}\left(\mathrm{SO}_{4}\right)\left(\mathrm{AsO}_{4}\right)(\mathrm{OH}) \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{4} \mathrm{Ca}_{3} \mathrm{MgAl}_{4}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{12} .9 \mathrm{H}_{2} \mathrm{O}$

TYPE D Structures with only Medium-sized Cations, $\mathrm{RO}_{4}: \mathrm{H}_{2} \mathrm{O}=1: 2$.

SERIES A METAVARISCITE SERIES, mon/P2 ${ }_{1} / \mathrm{n}$. The structure is a framework consisting of interlinked $\mathrm{AlO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedra and PO_{4} tetrahedra. In detail, the tetrahedral sheet consists of zig-zag chains of corner sharing AlO_{4} tetrahedra running parallel to the \mathbf{c} axis connected by shared corners with PO_{4} groups to produce a complex sheet of three and four-membered rings.

MCDAA	METAVARISCITE	$\mathrm{AlPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	
MCDAB	KOLBECKITE	$(\mathrm{Sc}, \mathrm{V}, \mathrm{Fe}, \mathrm{Al})\left((\mathrm{P}) \mathrm{O}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$	
MCDAC	PHOSPHOSIDERITE	$\mathrm{FePO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	
MCDAD	PARASCORODITE	$\mathrm{FeAsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	hex/trig
MCDAE	BONACINAITE	$\mathrm{Sc}\left(\mathrm{AsO}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$	

SERIES B VARISCITE SERIES, orth/Pcab. The structure is a framework consisting of interlinked $\mathrm{AIO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedra and PO_{4} tetrahedra.

MCDBA
MANSFIELDITE
$\mathrm{AlAsO}_{4}-2 \mathrm{H}_{2} \mathrm{O}$
MCDBB
SCORODITE
$\mathrm{FeAsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
MCDBC
MCDBD
MCDBE

SERIES C

MCDCA
MCDCB

SERIES D

MCDDA
ROLLANDITE
$\mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$

SERIES E BETTERTONITE, mon/C2/c. Grey, I.E., Kampf, A.R., Price, J.R. and MacRae, C.M. (2015) Bettertonite, IMA 2014074. CNMNC Newsletter No. 23, February 2015, page 55; Mineralogical Magazine, 79, 51-58. Chemically similar to liskeardite. The structure was solved using SHELXT and refined using SHELXL (Sheldrick, 2008). Partially occupied water molecule sites were located in difference Fourier maps. The final refinement incorporated anisotropic displacement parameters for all heteropolyhedral layer atoms and an overall isotropic displacement parameter for the partially occupied intralayer water sites. The agreement factors are $R_{1}=0.083$ for 2164 observed reflections with $F>4 \sigma(F)$ and 0.119 for all 3005 reflections to a resolution of 1.0 Å. Refined coordinates, equivalent isotropic displacement parameters and site occupancies are given in Table 3. Polyhedral bond lengths, reported in Table 4, are within the expected normal ranges for the metal atoms.

Bettertonite has a layer structure, with the layers parallel to (010) as shown in Figure 2. The layers comprise hexagonal rings of edge-shared Al-centred octahedra that are interconnected by cornersharing with AsO_{4} tetrahedra. The layers are strongly undulating and their packing produces large channels along [010], centred on the cell axes at $\boldsymbol{x}=0, z=1 / 2$ and $\boldsymbol{x}=1 / 2, z=0$. The channels are filled with water molecules, which become progressively disordered as their distance from the channel walls increases.

$$
\begin{aligned}
& \mathrm{Al}_{6}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{9} \cdot 16 \mathrm{H}_{2} \mathrm{O} \\
& {\left[\mathrm{Al}_{6}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{9}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

SERIES F	VANINIITE, mon/P2 $/ \mathbf{c}$.	
MCDFA	VANINIITE	$\mathrm{Ca}_{2} \mathrm{Mn}^{2+}{ }_{3} \mathrm{Mn}^{3+}{ }_{2} \mathrm{O}_{2}\left(\mathrm{AsO}_{4}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
SERIES G	SMAMITE, tric/P1.	
MCDGA	SMAMITE	$\mathrm{Ca}_{2} \mathrm{Sb}(\mathrm{OH})_{4}\left[\mathrm{H}\left(\mathrm{AsO}_{4}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$

TYPE E \quad Structures with only Medium-sized Cations, $\mathrm{RO}_{4}: \mathrm{H}_{2} \mathrm{O}</=1: 2.5$.

SERIES A LINDACKERITE SERIES, tric/P1. The structure contains M octahedra sharing corners with AsO ${ }_{4}$ and $\mathrm{AsO}_{3} \mathrm{OH}$ tetrahedra to forma 3-dimensional framework. The bond valence calculation reeals that one O position represents OH group and 7 others water molecules. The substituting Co and Ni atoms enter presumably the special position at $1 / 2,0,0$ denoted as M . of other two position $\mathrm{Cu}(1)$ is fivecoordinated in configuration of square pyramid, whereas $\mathrm{Cu}(2)$ is octahedrally coordinated. Edgesharing $\mathrm{Cu}(1)$ pyramids and $\mathrm{Cu}(2)$ octahedral form infinite bands // to [110]. The adjacent bands are linked together by two kinds of Astetrahedra. As a result a layer // to (001) is formed. The adjacent layers are connected via \mathbf{M} atoms. In addition, the \mathbf{M} position is surrounded by eight half-occupied water molecules in four independent positions. This arrangement can be interpreted as two interpenetrating octahedral (with common corners shared with As(2) tetrahedra) turned by $\sim 45^{\circ}$.

MCEAA
MCEAB
MCEAC
MCEAD
MCEAE
MCEAF
MCEAG
MCEAH

SERIES B NEWBERYITE-BRASSITE SERIES, orth/Pbca. Structure consists of insular Mg octahedra which are connected by corners to \mathbf{P} tetrahedra to form layers // (010); the layers are linked by H bonds. In brassite, Mg octahedra share corners with As tetrahedra to form chains // [010]; the chains are linked into (001) layers by H bonds.

MCEBA
MCEBB
MCEBC

SERIES C

MCECA
MCECB
SERIES D KONINCKITE, tetr/P4 $\mathbf{1 2}_{1}$ 2. The structure is a heteropolyhedral framework with zeolite-like tunnels along [001]. The DFT computations were used to locate water molecules in the channels and to complete the structural description. Cesàro (1883-1884) Soc. géol. Belgique, Ann. Mem.: 11: 247.

Larsen, E.S. (1921) The Microscopic Determination of the Nonopaque Minerals, First edition, USGS Bulletin 679: 97.

Palache, Charles, Harry Berman \& Clifford Frondel (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Seventh edition, Volume II: 763.

Powder Diffraction File (International Center for Diffraction Data) 41-1489.
Bulletin de la Société Française Minéralogie et de Cristallographie (1968): 91: 487.

Al'tgauzen, M. N.; Kuznetsova, E. G. (1973): Nature of weathering in pyrite-bearing argillaceous shales. Litologiya i Poleznye Iskopaemye (1973), (2), 41-49.

Leonardos, O. H.; Fernandes, S. M.; Fyfe, W. S.; Powell, M. (1987): The micro-chemistry of uraniferous laterites from Brazil: A natural example of inorganic chromatography. Chemical Geology 60, 111-119.

SERIES E SWITZERITE SERIES, mon/P2 $/$ /a. The structure consists of a sheet of composition $\left[\mathrm{Mn}_{4} \mathrm{O}_{10}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ which lies parallel to (001), and which is similar to the atomic sheet by vertex-sharing, forming a complex slab of composition $\left[\mathrm{Mn}_{6} \mathrm{O}_{14}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\right]_{2}$. Phosphate groups knit together the slabs internally to form a neutral layer. Between these neutral layers are free water molecules, eight per cell, bonded to the layers by H bonds. Switzerite transforms to metaswitzerite by expulsion of $3 / 4$ of the free water molecules and condensation of the neutral layers along cinto a framework structure. Structure consists of Mn octahedra sharing edges and corners to form layers of 6-membered rings // (001). These layers are linked by \mathbf{P} tetrahedra and \mathbf{H} bonds. The structure of castellaroite consists of four different arsenate tetrahedra, five different MnO_{6} octahedra and one MnO_{5} square pyramid. The octahedra centered by Mn1, Mn2, Mn3 and Mn4 share edges forming kinked chains // to [100]. The chains are linked to each other by coner-sharing, forming sheets // to [100]. All four arsenate tetrahedra corner-link with octahedra in the sheet, forming a heteropolyhedral layer. $\mathrm{Mn5O}_{6}-\mathrm{Mn6O}_{5}$ edge-sharing dimers are located between the heteropolyhedral layers and share corners with octahedra and tetrahedra in adjacent layers, thereby linking the layers in the [001] direction.

MCEEA
MCEEB
MCEEC

SERIES F STEIGERITE SERIES, mon/P2 ${ }_{1}$ or $\mathrm{P}_{1} / \mathrm{m}$. Structures not known.
Palache, C., Berman, H., \& Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 1049-1050.

Ankinovich, E.A., F.A. Kurmakaeva, and I.S. Zazubina (1987) Steigerite and vanalite from carbonaceoussiliceous vanadium-bearing formations of northwestern Kara-Tau (southern Kazakhstan).Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva: 116: 100-113 (in Russian with English abstract).

MCEFA
.open
MCEFB

SERIES G
VIVIANITE SERIES, mon/C2/m. The structure is based on a distorted closest packing of oxygen and water molecules, with Fe atoms in octahedral voids, and \mathbf{P} atoms in tetrahedral voids. The transition metals are randomly distributed over insular single and double (edge-sharing) octahedral groups of O atoms and water molecules connected by AsO_{4} tetrahedra to form complex slabs parallel to (010). These sheets are held together by \mathbf{H} bonding alone. American Mineralogist (1962): 47: 637-648. American Mineralogist (1979): 64: 713.

MCEGA
MCEGB
MCEGC
MCEGD
MCEGE
MCEGF
MCEGG
MCEGH
MCEGI
MCEGJ
MCEGK

ANNABERGITE
ARUPITE
BARICITE
ERYTHRITE
HÖRNESITE
KÖTTIGITE
PARASYMPLESITE
VIVIANITE
BOBIERRITE
MANGANESE-HORNESITE
SANTABARBARAITE

$$
\begin{aligned}
& \mathrm{Ni}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{Mg}, \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{CM} 01-1317\right. \\
& \mathrm{Co}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mg}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Zn}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{Mn}, \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}\right. \\
& \mathrm{Fe}^{3+}{ }_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

MCEGL	SCHODERITE	$\mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{VO}_{4}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$
MCEGM	FERRISYMPLESITE	$\mathrm{Fe}_{3}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
MCEGN	METAKÖTTIGITE	$\left.(\mathrm{Zn}, \mathrm{Fe}, \mathrm{Fe})_{3}(\mathrm{AsO})_{3}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
MCEGO	Open	
MCEGP	METASCHODERITE	$\mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{VO}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$
MCEGQ	PAKHOMOVSKYITE	$\mathrm{Co}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
MCEGR	BABANEKITE	$\mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$

SERIES H MALHMOODITE SERIES, mon/P2 ${ }_{1} / \mathrm{c}$. Structure of zigrasite consists of ZrO_{6} octahedron which shares corners with six PO_{4} tetraheddra, forming a $\left[\mathrm{Zr}\left(\mathrm{PO}_{4}\right)_{2}\right]$ sheet // to (001). These sheets are stacked in the c direction and dlinked by $\left(\mathrm{MgO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right)$ octahedra that share O atoms with the PO_{4} groups. The structure is formally a heteropolyhedral framework structure, but the linkage is weaker in the c direction, accounting for the markedd (001) cleavage.

MCEHA
MCEHB
MCEHC

SERIES I

MCEIA

SERIES J

MCEJA
SERIES K

MCEKA
MCEKB

TYPE F Structures with Large and Medium-sized Cations, $\mathrm{RO}_{4}: \mathrm{H}_{2} \mathrm{O}>1: 1$.

SERIES A WICKSITE SERIES, orth/Pcab. Structure consists of M octahedra, Na octahedra, and Ca polyhedra sharing corners with R tetrahedra to form a 3-dimensional framework.

MCFAA
GRISCHUNITE
$\mathrm{NaCa}_{2} \mathrm{Mn}(\mathrm{Mn}, \mathrm{Fe})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{6}$
$\mathrm{NaCa}_{2}(\mathrm{Fe}, \mathrm{Mn})_{4} \mathrm{MgFe}\left(\mathrm{PO}_{4}\right)_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$(\square, \mathrm{Na}) \mathrm{Ca}_{2}(\mathrm{Mn}, \mathrm{Mg}, \mathrm{Fe})_{2}(\mathrm{Fe}, \mathrm{Mg}, \mathrm{Al})_{2} \mathrm{Mn}_{2}\left(\mathrm{PO}_{4}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$
$(\mathrm{Na}, \square) \mathrm{Ca}_{2}(\mathrm{Mg}, \mathrm{Fe}, \mathrm{Fe})_{2}(\mathrm{Fe}, \mathrm{Mg})_{2}(\mathrm{Fe}, \mathrm{Mg})_{2}\left(\mathrm{PO}_{4}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$
$(\mathrm{Na}, \square) \mathrm{Ca}_{2} \mathrm{Fe}^{2+}{ }_{2}\left(\mathrm{Fe}^{3+} \mathrm{Mg}\right) \mathrm{Mn}_{2}\left(\mathrm{PO}_{4}\right)_{6} .2 \mathrm{H}_{2} \mathrm{O}$

FAIRFIELDITE SERIES, tric/P1. Structures consist of chains // [001] of corner-sharing M octahedra and R tetrahedra, as in roselite, are connected by Ca atoms. The Ca polyhedra share edges to form sheets of 6-membered rings // (010).

MCFBA
MCFBB
MCFBC
MCFBD
MCFBE
MCFBF
MCFBG
MCFBH
MCFBI
MCFBJ
MCFBK

SERIES C

MCFCA
MCFCB
MCFCC
MCFCD

SERIES D

MCFDA
MCFDB
MCFDC
MCFDD
MCFDE
MCFDF
MCFDG
MCFDH
MCFDI
MCFDJ
MCFDK
MCFDL
MCFDM
MCFDN

CASSIDYITE
COLLINSITE
FAIRFIELDITE
GAITITE
MESSELITE
PARABRANDTITE
ROSELITE-BETA
TALMESSITE
HILLITE
NICKELTALMESSITE
RRUFFITE

$$
\begin{aligned}
& \mathrm{Ca}_{2}(\mathrm{Ni}, \mathrm{Mg})\left(\mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2}(\mathrm{Mg}, \mathrm{Fe})\left(\mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2}(\mathrm{Mn}, \mathrm{Fe})\left(\mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \mathrm{Zn}\left(\mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2}(\mathrm{Fe}, \mathrm{Mn})\left(\mathrm{PO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \mathrm{Mn}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \mathrm{Co}(\mathrm{AsO} 4)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \mathrm{Mg}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2}(\mathrm{Zn}, \mathrm{Mg})\left[\mathrm{PO}_{4}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \mathrm{Ni}(\mathrm{AsO})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \mathrm{Cu}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

ROSELITE SERIES, mon $/ P 2_{1} / \mathrm{c}$. Structure consists of M octahedra sharing corners with four R tetrahedra to form linear chains // [001] that are connected by Ca atoms. The Ca polyhedra share edges to forms sheets of 6 -membered rings // (010). Kroehnkite belongs here.

BRANDTITE
ROSELITE
WENDWILSONITE
ZINCROSELITE

$$
\begin{aligned}
& \mathrm{Ca}_{2}(\mathrm{Mn}, \mathrm{Mg})\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2}(\mathrm{Co}, \mathrm{Mg})\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2}(\mathrm{Mg}, \mathrm{Co})\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \mathrm{Zn}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

TSUMCORITE SERIES, mon/C2/m, C2, Cm. Structure consists of chains of edge-sharing M(O,OH) ${ }_{6}$ octahedra // [010] which are connected by corner-sharing AsO ${ }_{4}$ tetrahedra to form sheets // to (001). The sheets are linked by Pb atoms and H bonds. This is the natrochalcite structure type. The structure of pottsite can be described as the packing of isolated VO_{4} tetrahedra, linked with heavy cations via common O atoms to form 2D blocks or double-layered (DL) structural units that are // to (001). The DL units are formed by pairs of vanadate tetrahedra arranged opposite one to each other and oriented in opposite directions. Water molecules are located in between vanadate tetrahedral groups to form $\left[\left(\mathrm{VO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3-}$ chains which are separated from adjacent chains in the (001) plane by rows of Pb and Bi cations extending in the [120] direction. The structure of pottsite is compared to that of related vanadate minerals based on isolated vanadate tetrahedra with formation of DL units. Kaliochalcite is a sulfate member of this group.

LOTHARMEYERITE
FERRILOTHARMEYERITE
COBALTOLOTHARMEYERITE
GARTRELLITE
PHOSPHOGARTRELLITE
TSUMCORITE
THOMETZEKITE
MOUNANAITE
ZINCGARTRELLITE
KRETTNICHITE
NICKELLOTHARMEYERITE
SCHNEEBERGITE
NICKELSCHNEEBERGITE
COBALTTSUMCORITE

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{Mn}, \mathrm{Zn})_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{Ca}(\mathrm{Fe}, \mathrm{Zn})_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{Ca}(\mathrm{Co}, \mathrm{Fe}, \mathrm{Ni})_{2}(\mathrm{AsO})_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{~Pb}(\mathrm{Cu}, \mathrm{Fe})(\mathrm{Fe}, \mathrm{Zn}, \mathrm{Cu})(\mathrm{AsO})_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{PbCuFe}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{~Pb}\left(\mathrm{Zn}_{2-\mathrm{x}} \mathrm{Fe}_{\mathrm{x}}\right)\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2-x} \\
& \mathrm{~Pb}(\mathrm{Cu}, \mathrm{Zn}, \mathrm{Al}, \mathrm{Fe})_{2}\left[(\mathrm{AsO})_{1.32}\left(\mathrm{SO}_{4}\right)_{0.92}\right]_{2}\left[(\mathrm{OH})_{0.74}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1.32}\right]_{2} \\
& \mathrm{PbFe}_{2}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})_{2} \\
& \mathrm{~Pb}(\mathrm{Zn}, \mathrm{Fe}, \mathrm{Cu})_{2}(\mathrm{AsO})_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2} \quad \text { tri/P1 } \\
& \mathrm{PbMn}_{2}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})_{2} \\
& \mathrm{Ca}(\mathrm{Ni}, \mathrm{Fe}, \mathrm{Co})_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2} \quad \mathrm{mon} . \mathrm{C} 2 / \mathrm{m} \\
& \mathrm{Bi}(\mathrm{Co}, \mathrm{Ni})_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{Bi}(\mathrm{Ni}, \mathrm{Co})_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{~Pb}(\mathrm{Co}, \mathrm{Fe})_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2}
\end{aligned}
$$

MCFDO	LUKRAHNITE	$\mathrm{Ca}(\mathrm{Cu}, \mathrm{Zn})(\mathrm{Fe}, \mathrm{Zn})\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2}$
MCFDP	CABALZARITE	$\mathrm{Ca}(\mathrm{Mg}, \mathrm{Al}, \mathrm{Fe})_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2}$
MCFDQ	MANGANLOTHARMEYERITE	$\mathrm{Ca}\left(\mathrm{Mn}^{3+}, \mathrm{Mg}, \square\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2}$
MCFDR	HELMUTWINKLERITE	$\mathrm{PbZn}_{2}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
MCFDS	MAWBYITE	$\mathrm{Pb}(\mathrm{Fe}, \mathrm{Zn})_{2}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{1.5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.5} \mathrm{mon} / \mathrm{C} 2 / \mathrm{m}$
MCFDT	POTTSITE	$\left(\mathrm{Pb}_{3} \mathrm{Bi}\right) \mathrm{Bi}\left(\mathrm{VO}_{4}\right)_{4} . \mathrm{H}_{2} \mathrm{O}$
MCFDU	RAPPOLDITE	$\mathrm{Pb}(\mathrm{Co}, \mathrm{Ni}, \mathrm{Zn})_{2}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
MCFDV	YANCOWINNAITE	$\mathrm{PbCuAl}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH}) \cdot \mathrm{H}_{2} \mathrm{O}$
MCFDW	NICKELTSUMCORITE	$\mathrm{Pb}(\mathrm{Ni}, \mathrm{Fe})_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}\right)_{2}$
MCFDX	WILHELMKLEINITE	$\mathrm{ZnFe}_{2}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{2}$
MCFDY	ARMELLINOITE-(Ce)	$\mathrm{Ca}_{4} \mathrm{Ce}^{4+}\left(\mathrm{AsO}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$

TYPE G

SERIES A

MCGAA
MCGAB
MCGAC
MCGAD

Structures with Large and Medium-sized Cations, $\mathrm{RO}_{4}: \mathrm{H}_{2} \mathrm{O}<1: 1$.

WALENTAITE-ANAPAITE SERIES, orth/, tric/P1. The structure consists of As, Ca, and Mg coordination polyhedra sharing edges and vertices forming corrugated (100) layers, which are linked by H bonding only. Four independent water molecules are sandwiched between adjacent layers, and build up [001] H-bonded chains. The Mg coordination octahedron and the Ca polyhedra show typical bond distances, so that no significant $\mathbf{C a} / \mathbf{M g}$ substitution should occur in any cation site. The structures of guerinite and ferrarisite show close structural relationships to picropharmacolite. In anapaite, clusters consisting of a Fe octahedron sharing opposite corners with two \mathbf{P} tetrahedra are linked into a framework by Ca polyhedra. The crystal structure of walentaite, originally reported as a calcium iron arsenate phosphate, has been determined and the As has been found to be predominantly in the trivalent state, as AsO3 trigonal pyramids and as As3O6 trimeric clusters. The mineral has body-centred orthorhombic symmetry with $a=26.188(5), b=7.360(2), c=10.367(2) \AA$. The structure was solved in space group Imma using synchrotron single-crystal diffraction data and refined to $\mathrm{R} 1 \mathbf{=} \mathbf{0 . 0 5 4}$ for 1454 observed reflections. The walentaite structure is based on the stacking of heteropolyhedral layers along [100] with the layers held together by hydrogen bonds to interlayer hydrated cations M(H2O)6, M=Mn2+, Fe2+, Ca2+, Na+. The layers, of composition $\mathrm{Fe} 3+3(\mathrm{P} 0.84 \mathrm{As} 0.16 \mathrm{O} 4) 2(\mathrm{O}, \mathrm{OH}) 6$, have the same topology of corner-connected octahedra and tetrahedra as in the alunite-supergroup mineral kintoreite-1c. Unit-cell-scale twinning of the kintoreite-like layers gives a saw-tooth aspect to the layers. The AsO3, As3O6 and (Ca,Na)O6 groups are attached to the surface of the layers. Although the kintoreite-like heteropolyhedral layers are fully ordered in Imma, the surface-attached groups and the interlayer hydrated cations are highly disordered, so the Imma model represents the average structure. Models for the local ordering have been developed from interpretation of the partial site occupancies and splitting of the disordered atoms. The crystal structure results have been combined with electron microprobe analyses to obtain a new formula for walentaite,
$\mathrm{Fe} 3+3(\mathrm{PO} .84 \mathrm{As} 0.16 \mathrm{O} 4) 2(\mathrm{O}, \mathrm{OH}) 6 \mathrm{As} 3+2.56 \mathrm{Ca} 0: 42 \mathrm{Na0}: 28 \mathrm{Mn} 2+0.35 \mathrm{Fe}+0.3006 .1(\mathrm{OH}) 0.9(\mathrm{H} 2 \mathrm{O}) 0.9$, in which 89% of the As is present as As3+.

WALENTAITE
ANAPAITE
PICROPHARMACOLITE
NATROWALENTAITE

$$
\begin{aligned}
& \mathrm{H}(\mathrm{Ca}, \mathrm{Mn}, \mathrm{Fe}) \mathrm{Fe}_{3}\left(\mathrm{AsO}_{4}, \mathrm{PO}_{4}\right) \cdot 7 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left[\mathrm{PO}_{4}\right]_{2} \\
& \mathrm{Ca}_{4} \mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& {\left[\mathrm{Fe}^{3+}{ }_{0.5} \mathrm{Na}_{0.5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{NaAs}^{3+}{ }_{2}\left(\mathrm{Fe}^{3+}{ }_{2.33} \mathrm{~W}^{6+}{ }_{0.67}\right)\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{7} \quad\right. \text { orth/lmma }}
\end{aligned}
$$

species, from Murcia Province, southeastern Spain, and Gold Hill, Utah. Canadian Mineralogist, 46, 205217. Viñals, J., Jambor, J.L., Raudsepp, M., Roberts, A.C., Grice. J.D., Kokinos, M., Wise, W.S. (2008): Barahonaite-(Al) and barahonaite-(Fe), new $\mathrm{Ca}-\mathrm{Cu}$ arsenate mineral species, from Murcia Province, southeastern Spain, and Gold Hill, Utah. Canadian Mineralogist, 46, 205-217.

MCGBA
MCGBB
MCGBC
MCGBD

SERIES C

FAHLEITE
SMOIYANINOVITE
BARAHONAITE-Fe
BARAHONAITE-AI

$$
\begin{array}{ll}
\mathrm{Zn}_{5} \mathrm{CaFe}_{2}\left(\mathrm{AsO}_{4}\right)_{6} \cdot 14 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{Co}_{5} \mathrm{CaFe}_{2}\left(\mathrm{AsO}_{4}\right)_{6} \cdot 14 \mathrm{H}_{2} \mathrm{O} \\
(\mathrm{Ca}, \mathrm{Cu}, \mathrm{Na}, \mathrm{Fe}, \mathrm{Al})_{12} \mathrm{Fe}_{2}\left(\mathrm{AsO}_{4}\right)_{8}(\mathrm{OH}, \mathrm{Cl})_{\mathrm{x}} \cdot \mathrm{nH}_{2} \mathrm{O} & \mathrm{n} \sim 16-18 \\
(\mathrm{Ca}, \mathrm{Cu}, \mathrm{Na}, \mathrm{Fe}, \mathrm{Al})_{12} \mathrm{Al}_{2}\left(\mathrm{AsO}_{4}\right)_{8}(\mathrm{OH}, \mathrm{Cl})_{x} \cdot \mathrm{nH}_{2} \mathrm{O} & \mathrm{n} \sim 16-18
\end{array}
$$

FRANCOANELLITE SERIES, trig/R3c or R3c. Structure consists of corner-sharing biphosphate tetrahedra and AI octahedra forming sheets // (0001); phosphate groups are accommondated in the cavities; the sheets are linked by H-bonding to form water molecules. The structure for gengenbachite consist of FeO_{6} octahedra and phosphate tetrahedral forming a three-dimensional framework with 8-membered ring channels running along the [100], [010] and [110] directions. CM2013-223. In the structure of camaronesite ($\mathrm{R} 1=2.28 \%$ for $1138 \mathrm{Fo}>4 \mathrm{sF}$), three types of Fe octahedra are linked by corner sharing with $(\mathrm{PO} 3 \mathrm{OH})$ tetrahedra to form polyhedral layers perpendicular to c with composition [$\mathrm{Fe} 3+(\mathrm{H} 2 \mathrm{O}) 2(\mathrm{PO} 3 \mathrm{OH})]$. Two such layers are joined through SO4 tetrahedra (in two half-occupied orientations) to form thick slabs of composition [Fe3+(H2O)2(PO3OH)]2(SO4). Between the slabs are partially occupied H2O groups. The only linkages between the slabs are hydrogen bonds. The most distinctive component in the structure consists of two Fe octahedra linked to one another by three PO4 tetrahedra yielding an [Fe2(PO4)3] unit. This unit is also the key component in the sodium super-ionic conductor (NASICON) structure and has been referred to as the lantern unit. The polyhedral layers in the structure of camaronesite are similar to those in the structure of taranakite. The Raman spectrum exhibits peaks consistent with sulfate, phosphate, water and OH groups.

MCGCA
MCGCB
MCGCC
MCGCD

SERIES D

MCGDA
MCGDB

SERIES E

MCGEA
MCGEB
MCGEC
MCGED
MCGEE
MCGEF

FRANCOANELLITE
TARANAKITE
GENGENBACHITE
CAMARONESITE
$\mathrm{H}_{6}(\mathrm{~K}, \mathrm{Na})_{3}(\mathrm{Al}, \mathrm{Fe})_{2}\left(\mathrm{PO}_{4}\right)_{8} \cdot 13 \mathrm{H}_{2} \mathrm{O}$
$\left(\mathrm{K}, \mathrm{NH}_{4}\right) \mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH}) \cdot 9 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{KFe}_{3} \mathrm{H}_{8}\left(\mathrm{PO}_{4}\right)_{6} .6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot 1-2 \mathrm{H}_{2} \mathrm{O}$
R32

DITTMARITE SERIES, orth/Pmn2 ${ }_{1}$. Structure consists of corner-sharing MnO_{6} octahedra to form sheets // (010) to which phosphate tetrahedra are attached at top and bottom; the sheets are linked by a layer of ammonium groups and water molecules.

DITTMARITE
NIAHITE

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right) \mathrm{MgPO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{NH}_{4}\right)(\mathrm{Mn}, \mathrm{Mg}, \mathrm{Ca}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SCHERTELITE-STRUVITE SERIES, orth/Pmn2 ${ }_{1}$, orth/Pbca. Structure consists of insular clusters composed of one $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedron and two $\mathrm{PO}_{3} \mathrm{OH}$ groups, like those in anapaite, which are linked by H bonding from the OH groups, water molecules and ammonium ions. In hannayite, (110) layers of corner-sharing Mg octahedra and P tetrahedra are linked by H bonds from the water molecules and ammonium ions. In Struvite, insular Mg octahedra, P tetrahedra and ammonium groups are linked by H bonds. In the structure of apexite, there are four components. The first (1) is a $\left[\mathrm{Na}_{2} \mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{14}\right]^{10+}$ heteropolyhedral cation cluster; (2) a trans edge-sharing chain of $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra; (3) an isolated PO_{4} group; and (4) an isolated water group. The structural omponents are linked to one another only via H bonds.

SERIES F RIMKOROLGITE-BRAKHCHISARAITSEVITE SERIES, mon/P2 ${ }_{1} / \mathbf{c}$. Structure consists of contorted chains $\sim / /[100]$ of edge-sharing (Mg,Fe) O_{6} octahedra which are linked by corners of octahedra to

MCGFA
MCGFB

MCGGA

TYPE H

SERIES A

MCHAA
MCHAB
MCHAC

SERIES B

MCHBA
MCHBB

SERIES C

MCHCA
MCHCB
forms sheets // (001); the sheets are linked into an open framework by edge-sharing dimmers of (Mg, Fe) O_{6} octahedra and phosphate tetrahedra; Na and water molecules are accommodated in channels. The main elements are zigzag chains of the MgO_{6} edge-sharing octahedral. The chains are linked via common vertices to form an octahedral sheet in which Mg atoms are located at the vertices of the 63 hexagonal net. The P tetrahedra are above and below hexagonal rings of $\mathbf{M g}$ octahedral and are linked to them by sharing common O vertices. The Ba atoms and water groups are located between the sheets providing their linkage into three-dimensional structure. The structure of rimkorolgite is closely related to that of bakhchisaraitsevite. Both structures are based on the octahedral-tetrahedral sheets of athe same type. In bakhchisaraitsevite, the sheets are linked into three-dimensional framework by edge-sharing between the MgO_{6} octahedra fro two adjacent sheets, whereas in rimkorolgite, thee is no linkage between adjacent sheets. The structure of rimkorolgite can be considered as bakhchisaraitsvite-like framework interrupted by the presence of large Ba cations.

RIMKOROLGITE
BAKHCHISARAITSEVITE

$$
\begin{aligned}
& (\mathrm{Mg}, \mathrm{Mn})_{5}(\mathrm{Ba}, \mathrm{Sr}, \mathrm{Ca})\left(\mathrm{PO}_{4}\right)_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& {\left[\mathrm{Na}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left\{\left(\mathrm{Mg}_{4.5} \mathrm{Fe}_{0.5}\right)\left(\mathrm{PO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right\}}
\end{aligned}
$$

CATTIITE, tric/P1. Structure not known. Britvin, S.N., G. Ferraris, G. Ivaldi, A.N. Bogdanova \& N.V. Chukanov (2002) Cattiite, Mg3(PO4)2.22H2O, a new mineral from Zhelezny mine (Kovdor Massif, Kola Peninsula, Russia). Neues Jahrbuch für Mineralogie, Monatshefte 2002: 160-168. Zeitschrift für Kristallographie: 155: 53-64.

CATTIITE

$$
\mathrm{Mg}_{3}\left[\mathrm{PO}_{4}\right]_{2} \cdot 22 \mathrm{H}_{2} \mathrm{O}
$$

LIVERSIDGEITE, tric/P1. The structure is based on two distinct, infinite zigzag chains of edgesharing $\mathbf{Z n}_{6}$ octahedra that extend in the a direction. The chains link to each other via common corners and also via corner-sharing PO_{4} tetrahedra, forming sheets // to the (011) plane. The sheets link via $\left[\mathbf{Z n}_{28}\right]$ dimeric building units, comprising edge-sharing $\mathbf{Z n}_{5}$ trigonal bipyramids and $\mathbf{Z} \mathbf{n}_{4}$ tetrahedra, resulting in an open framework. Large ellipsoidal channels extend along the a direction and are occupied by interstitial water groups and the H atoms of the water groups that coordinate to the Zn cations. An extensive network of H bonds provides additional linkage between the sheets in the structure, via the interstitial water groups.

LIVERSIDGEITE

$$
\mathrm{Zn}_{6}\left(\mathrm{PO}_{4}\right)_{4} .7 \mathrm{H}_{2} \mathrm{O}
$$

Structures with only Large Cations.

STERCORITE-MUNDRABILLAITE SERIES, tric/P1. Structure consists of edge-sharing Na octahedra forming chains // [010] that are sandwiched between insular phosphate tetrahedra to form (100) layers; the layers are linked by ammonium groups and water molecules.

STERCORITE

$$
\begin{aligned}
& \mathrm{Na}\left(\mathrm{NH}_{4}\right) \mathrm{H}\left(\mathrm{PO}_{4}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ca}\left(\mathrm{HPO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ca}\left(\mathrm{HPO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O} \text { orth }
\end{aligned}
$$

NABAPHITE-NASTROPHITE SERIES, cub/P2,3. Structure consists of an open framework of edgesharing (Sr, Ba) polyhedra and Na octahedra, with interstitial phosphate tetrahedra and water molecules linked to the framework by H bonding.

$$
\mathrm{NaBaPO}_{4} \cdot 9 \mathrm{H}_{2} \mathrm{O}
$$

NASTROPHITE

$$
\mathrm{Na}(\mathrm{Sr}, \mathrm{Ba}) \mathrm{PO}_{4} \cdot 9 \mathrm{H}_{2} \mathrm{O}
$$

HAIDINGERITE-VLADIMIRITE SERIES, mon/P2 ${ }_{1} / \mathrm{c}$. Structure consists of Ca polyhedra and As tetrahedra which share edges and corners to form sheets // (010) with large channels along [0120]. The sheets are linked by Ca octahedra and H bonds.

VLADIMIRITE

$$
\begin{aligned}
& \mathrm{Ca}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaH}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)
\end{aligned}
$$

SERIES D	FERRARISITE SERIES, tric/P1. Structure consists of two Ca polyhedra sharing edges and corners with As tetrahedra to form sheets // (001); Ca is accommodated between the sheets, forming channels // [010] and [100] that contain water molecules.
MCHDA	GUERINITE $\quad \mathrm{Ca}_{5}\left(\mathrm{HAsO}_{4}\right)\left(\mathrm{AsO}_{4}\right)_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{mon} / \mathrm{P}_{2} / \mathrm{n}$
MCHDB	FERRARISITE $\quad \mathrm{Ca}_{5}\left(\mathrm{HAsO}_{4}\right)\left(\mathrm{AsO}_{4}\right)_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O} \quad$ tric/P1
MCHDC	JEANKEMPITE $\quad \mathrm{Ca}_{5}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7} \quad$ tric/P1
SERIES E	MACHATSCHKIITE-RAUENTHALITE SERIES, trig/R3c. Structure consists of Ca polyhedra sharing edges with $\mathrm{As}(\mathrm{O}, \mathrm{OH})_{4}$ tetrahedra to form chains // to the edges of the rhombohedral Bravais cell; the chains are linked by corner-sharing $\mathbf{A s}(\mathbf{O}, \mathbf{O H})_{4}$ tetrahedra. In rauenthalite and phaunouxite, Ca polyhedra and arsenate tetrahedra share corners and edges to form sheets.
MCHEA	MACHATSCHKIITE $\mathrm{Ca}_{6}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{SO}_{4}\right) \cdot 15 \mathrm{H}_{2} \mathrm{O}$
MCHEB	RAUENTHALITE $\mathrm{Ca}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
MCHEC	PHAUNOUXITE $\quad \mathrm{Ca}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 11 \mathrm{H}_{2} \mathrm{O}$
SERIES F	RHABDOPHANE SERIES, hex/P622. The structure consists of columns of alternating edge-sharing XO_{8} polyhedra and phosphate tetrahedra // [0001] that are linked to adjacent columns by cornersharing, producing open [0001] channels that accommodate the water molecules.
MCHFA	BROCKITE ($\mathrm{Ca}, \mathrm{Th}, \mathrm{Ce}$) $\mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
MCHFB	GRAYITE (Th, $\mathrm{Pb}, \mathrm{Ca}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
MCHFC	NINGYOITE (Th, Ca, Ce) $\mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
MCHFD	RHABDOPHANE-(Ce) (Ce, La) $\mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
MCHFE	RHABDOPHANE-(La) (La,Ce)PO4 $\mathrm{H}_{2} \mathrm{O}$
MCHFF	RHABDOPHANE-(Nd) ($\mathrm{Nd}, \mathrm{Ce}, \mathrm{La}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
MCHFG	TRISTRAMITE ($\mathrm{Ca}, \mathrm{U}, \mathrm{Fe})\left(\mathrm{PO}_{4}, \mathrm{SO}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$
MCHFH	RHABDOPHANE-(Y) $\mathrm{Y}^{(} \mathrm{YPO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
SERIES G	CHURCHITE SERIES, mon/A2/a. Structure consists of sheets of edge- and corner-sharing \mathbf{P} tetrahedra and (Ca, Y) polyhedra // (010) which are linked by the H bonds of water molecules. Gypsum structure type.The structure of krautite is built up by (010) layers of AsO_{4} and MnO_{6} polyhedra that share edges and vertices.Adjacent layers are related by the 2_{1} operation and linked by H bonding only.
MCHGA	BRUSHITE $\quad \mathrm{CaH}\left(\mathrm{PO}_{4}\right)\left(\mathrm{OH}_{2}\right)_{2}$
MCHGB	PHARMACOLITE $\mathrm{CaH}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{OH}_{2}\right)_{2}$
MCHGC	CHURCHITE-(Y) (Y,Ca) $\left(\mathrm{PO}_{4}\right)\left(\mathrm{OH}_{2}\right)_{2}$
MCHGD	open
MCHGE	ARDEALITE $\mathrm{CaH}\left((\mathrm{P}, \mathrm{S}) \mathrm{O}_{4}\right)\left(\mathrm{OH}_{2}\right)_{2}$
SERIES H	MCNEARITE, tric/P1. Structure not known but may be related to autunite. Sarp, H., Deferne, J., Liebich, B. W. (1981): La mcnearite, $\mathrm{NaCa5H} 4(\mathrm{AsO} 4) 5 \cdot 4 \mathrm{H} 2 \mathrm{O}$, un nouvel arséniate hydraté de calcium et de sodium. Schweizerische Mineralogische und Petrographische Mitteilungen 61, 1-6.
	American Mineralogist (1982): 67: 856 (abstract).
	Ondruš, P. \& Hyršl, J. (1989): New finds and revision of secondary minerals from Přibram district. Acta Universitatis Carolinae, Geologica 1989, 521-533. [PXRD data]
MCHHA	MCNEARITE $\quad \mathrm{NaCa}_{5} \mathrm{H}_{4}\left(\mathrm{AsO}_{4}\right)_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
SERIES I	SINCOSITE SERIES. Tetr/P4/n or P4/nmm. No structure known. A. Pring, U. Kolitsch, W. D. Birch, B. D. Beyer, P. Elliott, P. Ayyappan and A. Ramanan (1999): Bariosincosite, a new hydrated barium vanadium phosphate, from the Spring Creek Mine, South Australia. Mineral. Mag. 63, 735-741.

Schaller W.T. (1922), Journal of the Washington Acadamy of Sciences: 12: 195.
American Mineralogist (1922): 7: 163-164.
Schaller (1924) American Journal of Science: 8: 462.
Palache, C., Berman, H., \& Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 1057-1058.

Shitov, V.A., E.V. Prozorovskaya, I.G. Smyslova, and L.G. Kuznetsova (1984) Sincosite - rare vanadium phosphate. Zap. Vses. Mineral. Obshch., 113, 56-59 (in Russian).

Zolensky, M.E. (1985) New data on sincosite. American Mineralogist, 70, 409-410.
Inorganic Chemistry (1992): 31: 4743-4748.

SERIES J STEPITE, tetr/l4 $/$ /acd. The structure consists of sheets perpendicular to \{001], made up of eight-

MCHIA
MCHIB
SINCOSITE
BARIOSINCOSITE

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{VO})_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ba}\left(\mathrm{VOPO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$ coordianted \mathbf{U} atoms and hydroxyarsenate tetrahedra. The ligands surrounding the \mathbf{U} atom consist of six O atoms which belong to the hydroxyarsenate g roups and two oxygen atoms which belong to interlayer water molecules. Each UO8 polyhedron is connected to five other U polyhedra via xix AsO3OH groups. Adjacent electroneutral sheets, of composition $\left[\mathrm{U}^{4+}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}\right]$. Which are linked by H bonding involving water molecules in the interlayaers and (OH) groups in the sheets. Plášil*, J., Fejfarová, K., Hloušek, J., Škoda, R., Novák, M., Sejkora, J., Čejka, J., Veselovský, F., Ondruš, P., Majzlan, J., Mrázek, Z. (2012) Štěpite, IMA 2012-006. page 813; Mineralogical Magazine, 76, 807-817.

Plásil, J.; Fejfarová, K.; Hloušek, J.; Skoda, R.; Novák, M.K; Sejkora, J.; Ejka, J.C.; Dusek, M.; Veselovský, F.; Ondrus, P.; Majzlan, J.Z.; Mrazek, Z. (2013): Štěpite, U(AsO3OH)2.4H2O, from Jáchymov, Czech Republic: the first natural arsenate of tetravalent uranium. Mineral. Mag. 77, 137-152.
MCHJA STEPITE $\mathrm{U}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$

SERIES K ROWLEYITE, iso/Fd3m. Structure consists of $\left[\mathrm{V}_{4} \mathrm{O}_{16}\right]^{12+}$ polyoxovanadate units that link to one another via shared vertices with $\left[(P, A s) O_{4}\right]^{3-}$ tetrahedra to form a 3D framework possessing large interconnected channels. The channels contain a 3D ordered $\left[\mathrm{Na}\left(\mathrm{NH}_{4}, \mathrm{~K}\right)_{9} \mathrm{Cl}_{4}\right]^{6+}$ salt net, which apparently served as a template for the formation of the framework. In that respect, rowleyite can be considered a salt-inclusion solid (SIS).

MCHKA ROWLEYITE $\quad\left[\mathrm{Na}\left(\mathrm{NH}_{4}, \mathrm{~K}\right){ }_{9} \mathrm{Cl}_{4}\right]\left[\mathrm{V}^{5+},{ }_{2}{ }_{2}(\mathrm{P}, \mathrm{As}) \mathrm{O}_{8}\right] \cdot \mathrm{n}\left[\mathrm{H}_{2} \mathrm{O}, \mathrm{Na}, \mathrm{NH}_{4}, \mathrm{~K}, \mathrm{Cl}\right]$
SERIES L THORASPHITE, orth/Pbcn. Structure determined.
MCHLA THORASPHITE $\mathrm{Th}_{2} \mathrm{H}\left(\mathrm{PO}_{4}, \mathrm{AsO}_{4}\right)_{3} .6 \mathrm{H}_{2} \mathrm{O}$

GROUP D Phosphates with Additional Anions, with Water.

TYPE A With Small Cations.

SERIES A MORAESITE SERIES, mon/C2/c. Structure consists of double chains of corner-sharing Be and P tetrahedra // [001] which are linked by corner-sharing to form a framework with large channels // [001] that accommodate water molecules.

MDAAA
MDAAB BEARSITE
MDAAC GLUCINE

$$
\begin{aligned}
& \mathrm{Be}_{2}(\mathrm{OH})\left(\mathrm{PO}_{4}\right)\left(\mathrm{OH}_{2}\right)_{4} \\
& \mathrm{Be}_{2}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)\left(\mathrm{OH}_{2}\right)_{4} \\
& \mathrm{CaBe}_{4}\left[(\mathrm{OH})_{2} / \mathrm{PO}_{4}\right]_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES B ROSCHERITE SERIES, mon/tric-C2/c/C1. Structure consists of chains of edge-sharing Mg,Fe octahedra // [110] and [110] which are linked by corner-sharing P tetrahedra; other chains // [100]
consist of 4-membered rings of corner-sharing P and Be tetrahedra; the various chains are linked by water and H bonding to form a framework, with Ca and water in cavities.

MDABA	ROSCHERITE
MDABB	ZANAZZIITE
MDABC	GREIFENSTEINITE
MDABD	ATENCIOITE
MDABE	RUIFRANCOITE
MDABF	GUIMARAESITE
MDABG	FOOTEMINEITE
MDABH	OKRUSCHITE

$$
\begin{aligned}
& \mathrm{Ca}_{2}(\mathrm{Mn}, \mathrm{Fe})_{5} \mathrm{Be}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} 6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2}(\mathrm{Mg}, \mathrm{Fe})_{5} \mathrm{Be}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} 6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2}(\mathrm{Fe}, \mathrm{Mn})_{5} \mathrm{Be}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} 6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \mathrm{Fe}^{2+} \square \mathrm{Mg}_{2} \mathrm{Fe}^{2+}{ }_{2} \mathrm{Be}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} 6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \square_{2}(\mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg})_{4} \mathrm{Be}_{4}\left[(\mathrm{OH})_{4} /\left(\mathrm{PO}_{4}\right)_{6}\right] 6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2}\left(\mathrm{Zn}, \mathrm{Mg}, \mathrm{Fe}_{5} \mathrm{Be}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right. \\
& \mathrm{Ca}_{2} \mathrm{Mn}^{2+} \square \mathrm{Mn}^{2+}{ }_{2} \mathrm{Mn}^{2+} \mathrm{Be}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{2} \mathrm{Mn}^{2+}{ }_{5} \mathrm{Be}_{4}\left(\mathrm{AsO}_{4}\right)_{6}(\mathrm{OH})_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES D WEINEBENITE, mon/Cc/. Structure consists of Be and P tetrahedra sharing corners to form layers // (100) consisting of 4-and 8-membered rings; these layers are connected by Be tetrahedra to form a framework. Ca polyhedra are accommodated in channels // [001].

MDADA

SERIES E

MDAEA

SERIES F

MDAFA

SERIES G KIPUSHITE SERIES, mon/Pe1/a. Structure consists of sheets // (001) of corner-sharing Zn and P tetrahedra, $\left[\mathrm{ZnOHPO}_{4}\right]^{2-}$, as in veszelyite, alternate with mixed double sheets of edge-sharing octahedra and tetrahedra, $\left[(\mathrm{Cu}, \mathrm{Zn})_{5}(\mathrm{OH})_{5}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{PO}_{4}\right]^{2+}$; both are connected via common corners into a framework with water molecules. Structure of philipsburgite, $\mathrm{Cu} 5 \mathrm{Zn}((\mathrm{As}, \mathrm{P}) \mathrm{O} 4) 2(\mathrm{OH}) 6 \cdot \mathrm{H} 2 \mathrm{O}$. Physics and Chemistry of Minerals, 45, 917-923.
Philipsburgite, Cu5Zn((As, P)O4)2(OH)6•H2O, from the Middle Pit, Gold Hill Mine, Tooele Co., Utah, USA, was studied by single-crystal X-ray diffraction and scanning electron microscopy. The empirical formula of the studied sample is (Cu4.69Zn1.23)(As0.86P0.18O4)2(OH)5.61.H2O, which agrees well with the previous reports on the mineral. Philipsburgite is monoclinic, P21/c, $a=12.385(6), b=9.261(4), c=10.770(5) A, \beta=97.10(1) o, V=1225.7$ (9) $\AA 3$ (at $100 K$), and $Z=4$. The crystal structure was refined to $R 1=0.046$ for 2563 unique observed reflections with $|F o| \geq 4 \sigma F$. The crystal structure of philipsburgite is isotypic to that of kipushite and can be considered as a complex three-dimensional framework consisting of two types of layers stacked parallel to the a-axis. The Atype layer is formed by the edge-sharing Jahn-Teller-distorted Cup6 octahedra $[\varphi=02-$, (OH)-,

H2O]. Two adjacent octahedral layers are linked via (As2O4) tetrahedra. The B-type layer is built by corner-sharing (ZnO4) and (As104) tetrahedra and is formed by the four- and eight-membered tetrahedral rings. The $A: B$ ratio of the A and B layers is equal to $2: 1$. The hydrogen bonding network in philipsburgite is rather complex and consists of two- and three-center hydrogen bonds. The As1 site accommodates ca. 18% of P and is a preferable position for the P substitution in philipsburgite. The observed selectivity of the As1 site for P may indicate that, for the intermediate compositions with the P:As ratios close to 1:1, there is a fully ordered species with P prevalent at the As1 site and As prevalent at the As2 site. The intermediate composition would, therefore, be $\mathrm{Cu} \mathrm{Zn}(\mathrm{AsO})(\mathrm{PO} 4)(\mathrm{OH}) 6 \cdot \mathrm{H} 2 \mathrm{O}$ and such a mineral can be considered as a separate species, according to the rules of the International Mineralogical Association (IMA). Philipsburgite should be considered as structurally complex with the Shannon information contents of 4.954 bits/atom and 614.320 bits/cell. The obvious reason for the structural complexity of the mineral is its modularity, i.e., the presence of two structurally distinct modules, the octahedral-tetrahedral (A) and tetrahedral (B) layers.

MDAGA
MDAGB

SERIES H

MDAHA

SERIES I MRAZEKITE, mon/P2 $/ \mathrm{n}$. Structure consists of chains of corner-sharing Cu square planes which are linked by P tetrahedra to form ribbons // [010]; these ribbons are connected into sheets // (103) by corner-sharing Cu square planes, and the sheets are linked by edge-sharing dimmers of Bi polyhedra and H bonds.

MDAIA
SERIES J

DAJA
SERIES K BRANDAOITE, tric/P1. Menezes Filho, L.A.D., Chaves, M.L.S.C., Cooper, M.A., Ball, N.A., Abdu, Y.A., Sharpe, R., Day, M.C., Hawthorne, F.C. (2019): Brandãoite, [BeAl2(PO4)2(OH)2(H2O)4](H2O), a new Be-Al-phosphate mineral from the João Firmino mine, Pomarolli farm region, Divino das Laranjeiras county, Minas Gerais State, Brazil: description and crystal structure. [i]Mineralogical Magazine[/i], [b]83[/b], 261-267.

Abstract:
Brandãoite, [BeAl2(PO4)2(OH)2(H2O)4](H2O), is a new Be-Al-phosphate mineral from the João Firmino mine, Pomarolli farm region, Divino das Laranjeiras County, Minas Gerais State, Brazil, where it occurs in an albite pocket with other secondary phosphates, including beryllonite, atencioite and zanazziite, in a granitic pegmatite. It occurs as colourless acicular crystals less than $10 \mu \mathrm{~m}$ wide and less than $100 \mu \mathrm{~m}$ long that form compact radiating spherical aggregates up to 1.01.5 mm across. It is colourless and transparent in single crystals and white in aggregates, has a white streak and a vitreous lustre, is brittle and has conchoidal fracture. Mohs hardness is 6, and the calculated density is $2.353 \mathrm{~g} / \mathrm{cm} 3$. Brandãoite is biaxial positive, $\alpha=1.544, \beta=1.552, \gamma=1.568$, all 0.002 ; 2Vobs $=69.7(10)^{\circ}, 2$ Vcalc $=71.2^{\circ}$. No pleochroism was observed. Brandãoite is triclinic, space group $P-1, a=6.100(4), b=8.616(4), c=10.261(5) A, \alpha=93.191(11), \beta=95.120(11), p=96.863(11)^{\circ}, V$ $=532.1(8) A 3, Z=2$. Chemical analysis of a needle $4 \mu \mathrm{~m}$ wide by electron microprobe and secondaryion mass spectrometry gave $\mathrm{P} 2 \mathrm{O} 5=28.42$, Al 2 O 320.15 , BeO 4.85 , H 2 O 21.47 , sum $74.89 \mathrm{wt} \%$. The empirical formula, normalized on the basis of 15 anions pfu with $(\mathrm{OH})=2$ and $(\mathrm{H} 2 \mathrm{O})=5 \mathrm{apfu}$ (from the crystal structure) is Be0.98Al1.99P2.02H12O15. The crystal structure was solved by direct methods and refined to an R1 index of 7.0%. There are two \mathbf{P} sites occupied by P5+, two AI sites occupied by octahedrally coordinated $\mathrm{Al} 3+$, and one Be site occupied by tetrahedrally coordinated $\mathrm{Be} 2+$. There are fifteen anions, two of which are (OH) groups and five of which are $(\mathrm{H} 2 \mathrm{O})$ groups. The simplified ideal formula is thus $[\mathrm{BeAl} 2(\mathrm{PO}) 2(\mathrm{OH}) 2(\mathrm{H} 2 \mathrm{O}) 4](\mathrm{H} 2 \mathrm{O})$ with $\mathrm{Z}=2$. Be and P tetrahedra

MDAKA

TYPE B

SERIES A DIADOCHITE-SARMIENTITE SERIES, mon/P2 ${ }_{1} / \mathrm{c}$. Structure consists of two Fe octahedra and one phosphate tetrahedron share corners to form a 3-membered polyhedral ring; the rings are linked into chains // to c by sharing corners of the phosphate tetrahedra. Sulphate tetrahedra are attached to the chains by sharing one of their corners with the octahedra. The chains are linked into slabs // (010) by H bonds; water molecules are accommodated between the slabs. The structure of rossiantonite shows similarities with minerals belonging to the sanjuanite-destinezite group. Specifically, the structure is built of PO_{4} and AIO_{6} polyhedral rings, creating complex chains // to b by sharing the $\mathrm{OH}-\mathrm{OH}$ edge belonging to the $\mathrm{Al}(3)$ polyhedron. Three symmetrically independent Al sites can be identified, namely: $\mathbf{A l}(1), \mathrm{Al}(2)$, and $\mathrm{Al}(3)$. Tetrahedral sites, occupied by P , share all their apexes with AIO_{6} octahedra. Unshared octahedral apeses are occupied by water molecules. Four additional water molecules are placed between the previously identified chains. Two oxygen tetrahedra, occupied by S atoms, are connected along the chains by means of weak H bonding.

$$
\mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{SO}_{4}\right)(\mathrm{OH})
$$

$$
\begin{aligned}
& \mathrm{Fe}_{2}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{SO}_{4}\right)(\mathrm{OH}) \\
& \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{SO}_{4}\right)(\mathrm{OH}) \cdot 9 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{2}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{SO}_{4}\right)(\mathrm{OH}) \cdot \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{4}\left(\mathrm{AsO}_{4}\right)_{3}\left(\mathrm{SO}_{4}\right)\left(\mathrm{OH} \cdot 15 \mathrm{H}_{2} \mathrm{O}\right. \\
& \mathrm{FeFe}_{4}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{2}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{SO}_{4}\right)(\mathrm{OH}) \cdot \mathrm{nH}_{2} \mathrm{O} \\
& \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)\left(\mathrm{PO}_{4}\right) \mathrm{F} \cdot 9 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{SO}_{4}\right)(\mathrm{OH}) \cdot 6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10} \cdot 4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES B VASHEGYITE-SASAITE SERIES, orth/Pnam. Structures not known. Martini, J. (1978): Sasaite, a new phosphate mineral from West Driefontein Cave, Transvaal, South Africa. Mineral. Mag., 42, 401-404. [Abs. in American Mineralogist (1979): 64: 464-465.]

Canadian Mineralogist (1983): 21: 497. Zimányi (1909) Math. es Term. tud. Ert., 27, 64-67.
Zimányi (1909) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 47: 53.
Wherry (1916) Journal of the Washington Academy of Science: 6: 105.
Schaller (1918) US Geological Survey Mineral Resources, part II: 163.
Larsen, E.S. (1921) The Microscopic Determination of the Nonopaque Minerals, First edition, USGS Bulletin 679: 153.

Ulrich (1922) Rozpr. České Ak.: 31: 2.
Clinton (1929) American Mineralogist: 14: 434.
Jahn and Gruner (1933) Mitt. Vogtländ. Ges. Naturfor.: 1, no. 8: 20.
Palache, C., Berman, H., \& Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 999.

McConnell, D. (1974) Are vashegyite and kingite hydrous aluminium phyllophosphates with kaolinite-type
structures? Mineralogical Magazine: 39: 802-806.
Johan, Z., E. Slansky, and P. Povondra (1983) Vashegyite, a sheet aluminum phosphate: new data. Canadian Mineralogist: 21: 489-498.

Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2000) Handbook of Mineralogy, Volume IV. Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, AZ, 680pp.: 623.

MDBBA
MDBBB

VASHEGYITE

$$
\begin{aligned}
& \mathrm{Al}_{6}\left(\mathrm{PO}_{4}\right)_{5}(\mathrm{OH})_{3} \cdot 23 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Al}, \mathrm{Fe})_{14}\left(\mathrm{PO}_{4}\right)_{11}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})_{7} \cdot 83 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES C

SCHOONERITE, orth/Pmab. The structure is based on edge-sharing $\mathrm{Fe}^{2+}-\mathrm{O}$ octahedral chains joined by sharing corners with $\mathrm{Fe}^{3+}-\mathrm{O}$ octahedra and phosphate tetrahedra that form a sheet parallel to $\{010\}$. To this sheet are linked additional phosphate tetrahedra, [MnO_{6}] octahedra and [ZnO_{5}] polyhedra. The resultant slabs are joined in the b direction by a network of H bonds only. Interlayer water molecules contribute to this H bond network. Structure consists of chains of corner-sharing Fe octahedra // [100] which are linked to Mn octahedra and Zn polyhedra by P tetrahedra, forming complex sheets // (010); the sheets are connected by water molecules and H bonds. The structure of flurlite has a heteropolyhedral layer structure, with layers // to (001) and with water molecules packing between the layers. The slab-like layers contain two types of polyhedral chains running // to [001]: (a) chains of edge-sharing octahedra containing predominantly Zn and (b) chains in which Fe^{3+}-centered octahedra share their apices with dimers comprising Zn -centered trigonal bipyramids sharing an edge with phosphate tetrahedra. The two types of chains are interconnected by cornersharing along [010]. A second type of P tetrahedron connects the chains to $\mathrm{MnO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ octahedra along [010] to complete the structure of the (001) slabs. Flurlite has the same stoichiometry as schoonerite, but with dominant Zn rather than Fe^{2+} in the edge-shared chains. Schoonerite has a similar heteropolyhedral layer structure with the same layer dimensions. The different symmetry (orthorhombic, Pmab) for schoonerite reflects a different topology of the layers. The ideal formula for flurlite has been revised to $\mathrm{Zn} 4 \mathrm{Fe} 3+(\mathrm{PO}) 3(\mathrm{OH}) 2(\mathrm{H} 2 \mathrm{O}) 7 \cdot 2 \mathrm{H} 2 \mathrm{O}$ and its Mn analogue, manganflurlite (IMA2017-076), $\mathrm{ZnMn2+3Fe3+(PO4)3(OH)2(H2O)7-2H2O} \mathrm{has} \mathrm{been} \mathrm{found} \mathrm{on} \mathrm{two}$ specimens of phosphophyllite from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany. Manganflurlite occurs as long, very thin, rectangular laths, up to 0.5 mm long and less than $10 \mu \mathrm{~m}$ thick. Laths are elongated on [100], flattened on \{001\} and exhibit the forms $\{100\},\{010\}$ and $\{00$ 1\}. The mineral is orange brown in colour and transparent with a vitreous iridescent lustre and buff streak. Crystals are flexible and elastic with irregular fracture, and three cleavages: perfect on $\{00$ $1\}$, good on $\{100\}$ and $\{010\}$. The Mohs' hardness is ca. $2^{11 / 2}$. The measured density is $2.73(2) \mathrm{g} \mathrm{cm}-$ 3. At room temperature, the mineral dissolves rapidly in dilute HCl . Optically, manganflurlite is biaxial (-), with $\alpha=1.623$ (calc), $\beta=1.649(2), y=1.673(2)$ (white light); $2 \mathrm{~V}=86(1)^{\circ}$. The dispersion is r $>v$, slight; the optical orientation is $X=\mathbf{c}, \mathbf{Y}=\mathrm{b}, \mathrm{Z}=\mathrm{a}$. The pleochroism is $X=$ pale yellow brown, $\mathrm{Y}=$ orange brown, $Z=$ light yellow brown, $Y>Z>X$. Electron microprobe analyses for crystals from the holotype specimen gave the empirical formula
$\mathrm{Zn}(\mathrm{Mn} 2+1.51 \mathrm{Fe} 2+0.69 \mathrm{Zn} 0.68 \mathrm{Mg} 0.08) \Sigma 2.96(\mathrm{Fe} 3+0.95 \mathrm{AlO} 05) \Sigma 1.00(\mathrm{PO} 4) 3(\mathrm{OH}) 1.92(\mathrm{H} 2 \mathrm{O}) 9.08$. Manganflurlite is monoclinic, $P 21 / m, a=6.4546(8), b=11.1502(9), c=13.1630(10) A, \beta=99.829(5)^{\circ}, V$ $=933.44(16) \AA 3$ and $Z=2$. The crystal structure, refined including all protons to Robs $=0.034$ for 2219 observed reflections [l>3бI], shows the mineral to be isostructural with flurlite. These minerals have a heteropolyhedral layer structure that is a topological isomer of the schoonerite structure. Grey, I.E., Keck, E., Kampf, A.R., Cashion, J.D., Macrae, C.M., Glenn, A.M., Gozukara, Y. (2019): Schmidite and wildenauerite, two new schoonerite-group minerals from the Hagendorf Süd pegmatite, Oberpfalz, Bavaria. Mineralogical Magazine, 83, 181-190.

[^0]MDBCA
MDBCB
MDBCC
MDBCD
MDBCE
MDBCF

SERIES D

MDBDA
MDBDB

SERIES E

MDBEA
SERIES F

MDBFA
SERIES G

MDBGA
SERIES H

MDBHA
TYPE C \quad Structures with only Medium-sized Cations, (OH, etc.): $\mathrm{RO}_{4}=1: 1$ and $<\mathbf{2 : 1}$
corner-sharing [$\mathrm{Cu} \varphi_{10}$] dimers sandwiched between two $\left[\mathrm{M}\left(\mathrm{T} \varphi_{4}\right) \varphi_{3}\right.$] sheets of corner-sharing ($\mathrm{Mg} \varphi_{6}$) and $\mathrm{P}_{\varphi_{4}}$ polyhedra; in each sheet, the polyhedra occupy the vertices of a 6^{3} net. One of the $\mathrm{H}_{2} \mathrm{O}$ groups in the formula unit is not bonded to Mg, Cu, or P but is held in the structure solely by a network of H bond. Structure consists of thick slabs // (100) which are composed of sheets of corner-sharing dimers of edge-sharing Cu octahedra sandwiched between sheets of corner-sharing Mg octahedra and \mathbf{P} tetrahedra; the slabs are linked by water molecules.

MDCAA
MDCAB
MDCAC
MDCAD

SERIES B

EUCHROITE
Open
NISSONITE
STRASHIMIRITE
$\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$
$\left[\mathrm{CuMg}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$
$\mathrm{Cu}_{8}\left(\mathrm{AsO}_{4}\right)_{4}(\mathrm{OH})_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

SERIES D BERAUNITE-BERMANITE SERIES, mon/C2/c. Structure consists of chains of edge-sharing Mn

MDCBA
MDCBB
MDCBC
SERIES C

MDCCA
MDCCB
MDCCC
MDCCD
MDCCE
MDCCF
MDCCG
MDCCH

LEGRANDITE SERIES, mon/P21/c. Structure consists of edge-sharing Zn octahedra forming chains // [100] that are linked by corner-sharing As tetrahedra and Zn trigonal dipyramids. In kovdorskite, clusters of four edge-sharing octahedra are linked by \mathbf{P} tetrahedra into a framework with channels // [010] that accommodate water molecules. The structure consists of infinite, undulating, edgesharing chain of zinc polyhedra parallel to the a axis which is weakened once per repeat unit by the presence of a 2.99 A $\mathrm{Zn}-\mathrm{O}$ bond. The arsenate tetrahedra share apices with the zinc polyhedra and serve to link chains together.

LEGRANDITE
KOVDORSKITE
KLEEMANITE

$$
\begin{aligned}
& \mathrm{Zn}_{4}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mg}_{5}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{CO}_{3}\right)(\mathrm{OH})_{2} \cdot 4-5 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{ZnAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

WHITMOREITE SERIES, mon/P2 ${ }_{1} / \mathrm{c}$. The structure consists of open sheets of composition $\left[\mathrm{Fe}^{3+}{ }_{2}(\mathrm{OH})_{2}(\mathrm{Op})_{6}\right]$. These are linked by PO_{4} tetrahedra to form slabs parallel to $\{100\}$ of composition $\left[\mathrm{Fe}^{3+}{ }_{2}(\mathrm{OH})_{2}\left[\mathrm{PO}_{4}\right]_{2}\right]^{2-}$; the remaining tetrahedral vertices are corner-linked to trans-[Fe $\left.{ }^{2+}(\mathrm{Op})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ octahedra.

ARTHURITE
EARLSHANNONITE
OJUELAITE
WHITMOREITE
COBALTARTHURITE
BENDADAITE
KUNATITE
CORALLOITE

$$
\begin{aligned}
& \mathrm{CuFe}_{2}\left(\mathrm{As}, \mathrm{P}, \mathrm{SO}_{4}\right)_{2}(\mathrm{O}, \mathrm{OH})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{Mn}, \mathrm{Fe}^{2}\right)_{2} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{ZnFe} e_{2}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}^{2+} \mathrm{Fe}^{3+}{ }_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left[\mathrm{PO}_{4}\right]_{2} \\
& \mathrm{Co}^{2+} \mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}^{2+} \mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \left.\mathrm{CuFe}^{3+}{ }_{2} \mathrm{PO}\right)_{2}(\mathrm{OH})_{2} / 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mn}^{2+} \mathrm{Mn}^{3+}{ }_{2}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$ octahedra // [101] which are corner-linked by P tetrahedra to form slabs // (010). The slabs are linked by Mn octahedra sharing corners with the \mathbf{P} tetrahedra. In beraunite, trimers of face-sharing Fe octahedra are corner-linked to other Fe octahedra to form zigzag chains // [001] and [100]; the chains are linked by sharing corners with P tetrahedra, forming thick sheets // (010); water molecules are accommodated in the channels // [101]. The structure of bermanite is based on linear edge-sharing chains of $\mathrm{Mn}^{3+}-\mathrm{O}$ octahedra that run parallel to the [101] direction. Each shared edge is linked by one phosphate oxygen (Op) and one hydroxyl group (OH) and the remaining vertices receive Op. The chain formula can be express as $\left.\left.{ }_{\infty}\left[\mathrm{Mn}^{3+}(\mathrm{OH})\right) \mathrm{Op}\right)_{3}\right]$. The phosphate tetrahedra link in such a way as to form a dense-packed slab parallel to $\{010\}$ with formal composition $\left[\mathrm{Mn}^{3+}{ }_{2}(\mathrm{OH})_{2}(\mathrm{PO})_{2}\right]^{2-}$.

MDCDA
MDCDB
MDCDC
MDCDD
MDCDE
MDCDF

BERAUNITE
BERMANITE
ERCITITE
TVRDYITE
ELEONORITE
ZINCOBERAUNITE

$$
\begin{aligned}
& \mathrm{FeFe}_{5}(\mathrm{OH})_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{PO}_{4}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mn}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left[\mathrm{Mn}^{3+}{ }_{2}(\mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{2}\right] \\
& \mathrm{NaMn}^{3+}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{Fe}^{2+} \mathrm{Fe}^{3+}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}^{3+}{ }_{6}\left(\mathrm{PO}_{4}\right)_{4} \mathrm{O}(\mathrm{OH})_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{ZnFe}^{3+}{ }_{6}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

MDCDG
MDCDH
MENGEITE
MAGNESIOBERMANITE

$$
\begin{aligned}
& \left.\mathrm{Ba}\left(\mathrm{Mg}, \mathrm{Mn}^{2+}\right)\right) \mathrm{Mn}^{3+}{ }_{4}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MgMn}^{3+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES E STRUNZITE SERIES, tric/P1. Structure consists of corner-sharing Fe octahedra forming [001] chains that are linked by phosphate tetrahedra to form sheets // (100); the sheets are connected by Mn octahedra to form a framework. In metavauxite similar chains of AI octahedra // [001] are linked by phosphate tetrahedra to form sheets // (100); the sheets are connected into a framework by Fe octahedra.

MDCEA
MDCEB
MDCEC
MDCED
MDCEE
MCCEF
MCCEG
MCCEH

STRUNZITE
FERROSTRUNZITE
FERRISTRUNZITE
METAVAUXITE
METAVIVIANITE
SYMPLESITE
ZINCOSTRUNZITE
FERRIVAUXITE

$$
\begin{aligned}
& \mathrm{MnFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{FeFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{FeFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{FeAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{3-\mathrm{x}} \mathrm{Fe}_{\times}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{\times} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{ZnFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 6 \cdot 5 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}^{3+} \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES F LAUEITE-STEWARTITE SERIES, tric/P1. Structure consists of chains // [001] of OH-corner-sharing [$\mathrm{FeO}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] octahedra which are bridged by P tetrahedra to form open sheets // (010); the sheets are connected into a framework by expanded $\left[\mathrm{MnO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ octahedra, with two free water molecules in the cavities. The structure of this group contains corner-sharing chains of octahedra of composition $\left[\mathrm{Fe}^{3+}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{O}_{\mathrm{p}}\right)_{3}\right.$]. Phosphate tetrahedra bridge these chains to form sheets oriented parallel to $\{010\}$. These sheets are bridged along [010] by trans- $\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{O}_{\mathrm{p}}\right)_{2}$ octahedra.

MDCFA
MDCFB
MDCFC
MDCFD
MDCFE
MDCFF
MDCFG
MDCFH
MDCFI
MDCFJ
MDCFK
MDCFL
MDCFM
MDCFN
MDCFO

GORDONITE
LAUEITE
PARAVAUXITE
SIGLOITE
USHKOVITE
STEWARTITE
MANGANGORDONITE
PSEUDOLAUEITE
KASTNINGITE
MAGHREBITE
NORDGAUITE
FERROLAUEITE
CESARFERREIRAITE
KAYROBERTSONITE
KUMMERITE

$$
\begin{aligned}
& \mathrm{MgAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MnFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{FeAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{FeAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MgFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{5} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MnFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Mn}, \mathrm{Mg}) \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MnFe}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Mn}, \mathrm{Fe}, \mathrm{Mg}) \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MgAl}_{2}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MnAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~F}, \mathrm{OH})_{2} \cdot 5 \cdot 5 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}^{2+} \mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& {\left[\mathrm{MnAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}} \\
& \mathrm{Mn}^{2+} \mathrm{Fe}^{3+} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES G VANTASSELITE-VAUXITE SERIES, tri/P1. Structure consists of chains // [001] of alternating, edgesharing Fe and Al octahedra which are corner-linked on two sides to chains of corner-sharing \mathbf{P} tetrahedra and Al octahedra, forming a triple chain. The triple chains are connected by cornersharing AI and Fe octahedra to form a framework with water molecules in the cavities. The structure of tinticite and kamarizaite consist of zigh-zag chains along [110] of edge-sharing FeO_{6} octahedron. The chains are corner-linked by the (As/P)O O_{4} tetrahedra into a 3D framework additionally strengthened by medium-strong to weak H -bonding.
$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left[\mathrm{Al}_{4}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{PO}_{4}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Al}_{4}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$

MDCGC	TINTICITE
MDCGD	KAMARIZAITE
MDCGE	FERRIVAUXITE

$$
\begin{aligned}
& \mathrm{Fe}_{3}^{3+}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{3}^{3+}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}^{3+} \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES H CACOXENITE, hex $/ \mathrm{Pb}_{3} / \mathrm{m}$ or Pb_{3}. Structure consists of two fundamental building blocks: a cluster $\left\{\mathrm{PFe}_{6} \mathrm{O}_{28}\right\}$ of edge- and corner-sharing Fe octahedra with attached P tetrahedra; and tetramers composed of four edge- and corner-sharing octahedra linked into chains by P tetrahedra. These building blocks are linked by Fe octahedra and All trigonal dipyramids to create a framework with very large open channels that contain water molecules.
MDCHA CACOXENITE $\quad(\mathrm{Fe}, \mathrm{Al})_{25}\left(\mathrm{PO}_{4}\right)_{17} \mathrm{O}_{6}(\mathrm{OH})_{12} \cdot 75 \mathrm{H}_{2} \mathrm{O}$

SERIES I SOUZALITE SERIES, tric, P1. Structure probably contains clusters of 3 face-sharing octahedra linked by P tetrahedra.
$(\mathrm{Mg}, \mathrm{Fe})_{3}(\mathrm{Al}, \mathrm{Fe})_{4}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
GORMANITE
$\mathrm{Fe}_{3}(\mathrm{Al}, \mathrm{Fe})_{4}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
MDCIC
KENNGOTTITE
$\mathrm{Mn}^{2+}{ }_{3} \mathrm{Fe}^{3+}{ }_{4}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \quad \mathrm{mon} / \mathrm{P} 2 / \mathrm{a}$

SERIES J WAVELLITE-KINGITE SERIES, orth/Pcmm. The structure is formed by two kinds of AIO J_{6} octahedra along the \mathbf{c} axis, linked together by PO_{4} tetrahedra. This linkage creates a dense layer of octahedra and tetrahedra in the plane (010), which are in turn connected by alternating AIO_{4} octahedra and water molecules. This arrangement is seen as a framework of AlO_{6} octahedral chains linked by PO_{4} tetrahedra.

SERIES K MAPIMITE, mon/Cm. Structure consists of clusters of five edge-sharing (Zn, Fe) $\left(\mathrm{O}, \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{6}$

MDCJA
MDCJB
MDCJC
MDCJD
MDCJE

MDCKA
SERIES L

MDCLA
MDCLB

WAVELLITE
KINGITE
KRIBERGITE
ALLANPRINGITE
FLUORWAVELLITE

$$
\begin{aligned}
& \mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}, \mathrm{~F})_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}, \mathrm{~F})_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Al}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{SO} 4)(\mathrm{OH})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Al}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} \mathrm{~F} \cdot 5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$ octahedra which are linked by arsenate tetrahedra to form a framework with water molecules in the cavities.

MAPIMITE

$$
\mathrm{Zn}_{2} \mathrm{Fe}_{3}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}
$$

FALSTERITE, mon/ $\mathrm{P}_{1} / \mathrm{c}$. The structure of falsterite contains edge-sharing chains of $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+} \mathrm{O}_{6}$ octahedra and corner-sharing chains of ZnO_{4} tetrahedra along a. These chains are linked to one another by PO_{4} tetrahedra, forming a sheet // to $\{010\} . \mathrm{Mn}^{2+} \mathrm{O}_{6}$ octahedra and $\mathrm{cAO} \mathrm{O}_{7}$ polyhedra also link to this sheet, resulting in a thick slab. The slabs are bridged in the [010] direction by edgesharing dimers of MgO_{6} octahedra, which link to the slabs by sharing edges with ZnO_{4} tetrahedra in adjacent slabs. An extensive network of hydrogen bonds further links the slabs.

TYPE D Structures with only Medium-sized Cations, (OH, etc.): $\mathrm{RO}_{\mathbf{4}}=\mathbf{2 : 1}$

SERIES A CHENEVIXITE SERIES, mon/P2 ${ }_{1} / \mathrm{m}$. Structure consists of edge-sharing Cu distorted octahedra forming chains // [100], decorated by Fe octahedra on two sides of the chain; the chains are connected into sheets // (001) by sharing corners of octahedra with those of arsenate tetrahedra; the sheets are linked by sharing \mathbf{O} atoms between sheets.

MDDAA	CHENEVIXITE	$\mathrm{Cu}_{2} \mathrm{Fe}_{2}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
MDDAB	LUETHEITE	$\mathrm{Cu}_{2} \mathrm{Al}_{2}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$

B	AKROCHORDITE, mon/P2 ${ }_{1} / \mathrm{c}$. The structure is based on a sheet of co ${ }^{2}{ }_{\infty}\left[\mathrm{M}_{5}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{AsO}_{4}\right)_{2}\right]$ parallel to the $\{010\}$ plane. Of the six uniqu penetrate the c-axial glide planes and bond symmetry-equivalent she sheets are made of fundamental building blocks based on ${ }^{1}\left[M_{5} \varphi_{2}{ }^{\prime} \varphi\right.$ amphibole type. These walls are connected in stepwise fashion by O to form the sheet-like modular units.	
MDDBA	AKROCHORDITE	$\mathrm{Mn}_{4} \mathrm{Mg}(\mathrm{OH})_{4}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
MDDBB	OGDENSBURGITE	$\mathrm{Ca}_{2} \mathrm{Fe}_{4}(\mathrm{Zn}, \mathrm{Mn})\left(\mathrm{AsO}_{4}\right)_{4}(\mathrm{OH})_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
MDDBC	GUANACOITE	$\mathrm{Cu}_{2} \mathrm{Mg}_{2}(\mathrm{Mg}, \mathrm{Cu})(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{AsO}_{4}\right)_{2}$

SERIES C TURQUOISE SERIES, tric/ P1. The structure consists of dimmers of edge-sharing Al octahedra which are linked by four P tetrahedra to form chains // [010]; the chains are linked by insular AI octahedra to form zigzag chains // [001]; further linkages are provided by $\mathrm{Cu}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ distended octahedra.

MDDCA
MDDCB
MDDCC
MDDCD
MDDCE
MDDCF
MDDCG

SERIES D CHILDRENITE SERIES, orth/Bbcm. Structure consists of edge-sharing (Fe,Mn) $\mathrm{O}_{4}(\mathrm{OH})_{2}$ octahedra and corner-sharing $\mathrm{AlO}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedra forming chains, both // [001]; the chains are corner bonded by OH to form sheets // (100); two of the P tetrahedra strengthen the Al chains, and two O atoms interconnect the sheets.

MDDDA
MDDDB
MDDDC
MDDDD

SERIES E
MDDEA
TYPE E Structures with only Medium-sized Cations, (OH, etc.): $\mathrm{RO}_{4}=3: 1$.

SERIES A SENEGALITE-FLUELLITE SERIES, orth/P2 ${ }_{1} \mathrm{nb}$. The structure is based on chains of composition $\left.{ }_{\infty}^{1}{ }_{\infty}^{[5]}{ }^{\left[\mathrm{Al}^{[6]}\right.} \mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{Op})_{4}\right]$ where ϕ is a coordinating oxygen and Op is phosphate oxygen. Two symmetry-equivalent chains run parallel to [101] and [101], each based on distorted
$\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{Op})_{2}$ octahedral and $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{Op})_{2}$ trigonal bipyramidal edge-sharing dimers which further corner-link to complete the chain. Corner-linking $\left(\mathrm{PO}_{4}\right)$ tetrahedra knit neighboring chains to form an open sheet parallel to (010). Further tetrahedral corner-links to chains related by the b-axial glide form an open polyhedral framework structure.

SENEGALITE
BOLIVARITE
BULACHITE
FLUELLITE

$$
\begin{aligned}
& \mathrm{Al}_{2}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\left[\mathrm{PO}_{4}\right] \\
& \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})_{3} \cdot 4-5 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Al}_{2}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Al}_{2} \mathrm{~F}_{2}\left(\mathrm{PO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH}) \cdot 4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

| SERIES B | ZAPATALITE-CERULEITE SERIES, tetr/ (structures not known). The structure of ceruleite has a unique arrangement that consists of $\mathrm{Al}(\mathrm{O}, \mathrm{OH})_{6}$ octahedra that are sharing edges to form rhombusshaped tetramers. AsO_{4} tetrahedra share two corners with one such rh ombus thd the other two corners with each of two other rhombi, linking them into a very open mesoporous framework $\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ squares lie in the fhannels and link Al_{4} rhombi along // b . Water molecules are also located in the channels.
 The crystal structure of ceruleite, CuAl4[AsO4]2(OH)8(H2O)4, has been solved to an R1 of 0.0307, using the world's largest crystals from the Cap Garonne mine, France. Ceruleite crystallises in space group $P 21 / n$, with the unit cell $a=7.2000(14), b=11.345(2), c=9.856(2) A, \beta=105.57(3)^{\circ}, \mathrm{V}=775.6(3)$ $\dot{A} 3$ and $Z=1$. Ceruleite has a unique structure that consists of $\mathrm{Al}(\mathrm{O}, \mathrm{OH}) 6$ octahedra that are sharing edges to form rhombus-shaped tetramers. AsO4 tetrahedra share two corners with one such rhombus and the other two corners with each of two other rhombi, linking them into a very open mesoporous framework. $\mathrm{Cu}(\mathrm{OH}) \mathbf{2}(\mathrm{H} 2 \mathrm{O}) 2$ squares lie in the channels and link Al4 rhombi along \|| b. H 2 O molecules are also located in the channels. |
| :---: | :---: |
| MDEBA | ZAPATALITE $\mathrm{Cu}_{3} \mathrm{Al}_{4}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{9} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ |
| MDEBB | CERULEITE $\quad \mathrm{Cu}_{2} \mathrm{Al}_{7}\left(\mathrm{AsO}_{4}\right)_{4}(\mathrm{OH})_{13} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ |
| MDEBC | ALDERMANITE $\quad \mathrm{Mg}_{5} \mathrm{Al}_{12}\left(\mathrm{PO}_{4}\right)_{8}(\mathrm{OH})_{22} 322 \mathrm{H}_{2} \mathrm{O}$ |

SERIES C TAPIAITE, mon/P2 ${ }_{1} / \mathrm{n}$. The structure of tapiaite ($\mathrm{R}_{1}=5.37 \%$ for $1733 \mathrm{Fo}>4 \mathrm{sF}$) contains $\mathrm{Al}\left(\mathrm{AsO} \mathrm{O}_{4}\right)(\mathrm{OH})_{2}$ chains of octahedra and tetrahedra that are topologically identical to the chain in the structure of linarite. CaO_{8} polyhedra condense to the chains, forming columns, which are decorated with additional peripheral AsO_{4} tetrahedra. The CaO_{8} polyhedra in adjacent columns link to one another by corner-sharing to form thick layers parallel to $\{101$.$\} and the peripheral \mathrm{AsO}_{4}$ tetrahedra link to CaO_{6} octahedra in the interlayer region, resulting in a framework structure.

Kampf, A.R., Mills, S.J., Nash, B., Dini, M. and Molina Donoso, A.A. (2014) Tapiaite, IMA 2014-024. CNMNC Newsletter No. 21, August 2014, page 800; Mineralogical Magazine, 78, 797-804.

Kampf, Anthony R., Mills, Stuart J., Nash, Barbara P., Dini, Maurizio, and Molina Donoso, A. A., 2014. Tapiaite, Ca5Al2(AsO4)4(OH)4•12H2O, a new mineral from the Jote mine, Tierra Amarilla, Chile. Mineralogical Magazine, 78.

MDECA TAPIAITE $\mathrm{Ca}_{5} \mathrm{Al}_{2}\left(\mathrm{AsO}_{4}\right)_{4}(\mathrm{OH})_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
TYPE F \quad Structures with only Medium-sized Cations, (OH , etc.): $\mathrm{RO}_{4}>3: 1$

SERIES A HOTSONITE-RUSAKOVITE SERIES, tric/. Structures not known. Burkes et al. (1984): Hotsonite, a new hydrated aluminum-phosphate-sulfate from Pofarder, South Africa. American Mineralogist 68, 979-983. American Mineralogist: 69: 979-983. American Mineralogist: 76: 1734.

MDFAA
MDFAB
MDFAC
MDFAD
MDFAE

MDFBA
MDFBB

SERIES B

$$
\mathrm{Al}_{5}\left(\mathrm{PO}_{4}\right)\left(\mathrm{SO}_{4}\right)(\mathrm{OH})_{10} \quad \text { tric/P1 or } \mathrm{P} 1
$$

$\mathrm{Al}_{3} \mathrm{PO}_{4}(\mathrm{OH})_{6} 6 \mathrm{H}_{2} \mathrm{O}$
Hydrous phosphate of Al, Pb and Cu
$(\mathrm{Fe}, \mathrm{Al})_{5}\left(\mathrm{~V}, \mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{9} \cdot 9 \mathrm{H}_{2} \mathrm{O}$

SIELECKIITE-LIROCONITE SERIES, tric/P1. Structure consists of dimmers of edge-sharing Cu octahedra which are corner-linked to [100] chains of edge-sharing $\mathrm{Al}(\mathrm{O}, \mathrm{OH})_{6}$ octahedra and arsenate tetrahedra to form a framework; channels // [100] and [001] accommodate water molecules. The structure of sieleckiite is composed of a framework of corner, edge- and face-sharing Cu and AI octahedra and PO_{4} tetrahedra.

SIELECKIITE

$$
\begin{aligned}
& \mathrm{Cu}_{3} \mathrm{Al}_{4}\left(\mathrm{PO}_{4}\right)_{12} \cdot 2 \mathrm{H}_{2} \mathrm{O} \mathrm{mon} / \mathrm{C} 2 / \mathrm{m} \\
& \mathrm{Cu}_{2} \mathrm{Al}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}
\end{aligned}
$$

CHALCOPHYLLITE SERIES, orth/P2 ${ }_{1} 22$. The structure consists of nine edge-sharing $\mathrm{Cu}(\mathrm{OH})_{6}$ octahedra and on Al octahedron forming open sheets // (001), decorated on both sides by As

	tetrahedra that share three corners with the Cu octahedra surrounding vacant sites in the sheets; the sheets are linked by S tetrahedra and H bonds.
MDFCA	CHALCOPHYLLITE $\mathrm{Cu}_{9} \mathrm{Al}\left[(\mathrm{OH})_{12} /\left(\mathrm{SO}_{4}\right)_{1.5} /\left(\mathrm{AsO}_{4}\right)_{2}\right] .18 \mathrm{H}_{2} \mathrm{O}$
MDFCB	TIBERIOBARDIITE $\quad\left\{\mathrm{Cu}_{9} \mathrm{Al}\left[\mathrm{SiO}_{3}(\mathrm{OH})_{2}(\mathrm{OH})_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right\}\left(\mathrm{SO}_{4}\right)_{1.5}\right.$ trig/R3
MDFCC	KRENDELEVITE $\mathrm{Cu}_{18} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{27} \cdot 33 \mathrm{H}_{2} \mathrm{O}$
SERIES D	PARNAUITE, orth/Pmn21. The structure is of a new type, and contains Cu in 6 distinct sites, forming two three-polyhedron wide ribbons of edge-sharing Cu-O polyhedral extending // to the a-axis. The two ribbons lie back-to-back and are bridged by two As tetrahedra. The collection of 6Cu + 2As cations plus ligands forms a rod-like moiety extending // to a. These rods link through polyhedral corners to form complex, corrugated (010) layers. The interlayer space is occupied by water molecules. Disorder arises because each As tetrahedron shares a face with a $\mathrm{Cu}\left(\mathrm{O}, \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{5-6}$ polyhedron in the substructure, necessitating partial occupancy of both As and Cu sites. The S atoms were not located in the refinement, but four electron-density maxima in the interlayer region were interpreted as water molecules. Hence, the simplified structural formula derived from the substructure is $\left(\mathrm{Cu}_{10} \square_{2}\right)\left(\mathrm{As}_{2} \square_{2}\right) \mathrm{O}_{8}(\mathrm{OH})_{14.8 \mathrm{H}_{2} \mathrm{O}}$. The discrepancy presumably arises due to strong delocalization of the sulphur and the apical oxygen of the SO_{4} tetrahedron in the substructure. Short-range order of the $\mathrm{Cu}-\mathrm{As}$ and $\mathrm{Cu}-\mathrm{S} / /$ a can occur independently in the relevant structural rods, which accounts for the observed long-range disorder.
MDFDA	PARNAUITE $\quad\left(\mathrm{Cu}_{10} \square_{2}\right)\left(\mathrm{As}_{2} \square_{2}\right) \mathrm{O}_{8}(\mathrm{OH})_{14} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
SERIES E	FORETITE, tri/P1. Structure not determined due to poor quality of crystals.
MDFEA	FORETITE $\quad \mathrm{Cu}_{2} \mathrm{Al}_{2}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{OH}, \mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right)_{6}$
SERIES F	SEGERSTROMITE, cub/I2 3 . Crystal structure is constructed from tshree different polyhedral units: distorted CaO_{8} cubes, rigid $\mathrm{As}^{5+} \mathrm{O}_{4}$ arsenate tetrahedra, and neutral $\mathrm{As}^{3+}(\mathrm{OH})_{3}$ arsenite triangular pyramids. The Ca-groups form layers of corrugated crankshaft chains that lie // to the cubic axes. These chains are linked by the isolated $\mathrm{As}^{5+} \mathrm{O}_{4}$ and $\mathrm{As}^{3+}(\mathrm{OH})_{3}$ groups. Hexiong Yang, Benjamin N . Schumer, Robert A. Jenkins, J. Rueben Bautista, Robert T. Downs and Stanley H. Evans (2014) Segerstromite, IMA 2014-001. CNMNC Newsletter No. 20, June 2014, page 554; Mineralogical Magazine, 78,549-558.
MDFFA	SEGERSTROMITE $\mathrm{Ca}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left[\mathrm{As}(\mathrm{OH})_{3}\right]_{2}$
SERIES G	BARROTITE, trig/P31 or P32. Sarp, H. and Cerny, R. (2013) Barrotite, IMA 2011-061a. CNMNC Newsletter No. 16, August 2013, page 2698; Mineralogical Magazine, 77, 2695-2709.
	Sarp H., Cerny R., Puscharovsky D.Yu., Schouwink P., Teyssier J., Williams P.A., Babalik H., Mari G. (2014): La barrotite, Cu9Al(HSiO4)2[(SO4)(HAsO4)0.5](OH)12•8H2O, un nouveau minéral de la mine de Roua (Alpes-Maritimes, France). Riviera Scientifique, 98, 3-22.
MDFGA	BARROTITE $\mathrm{Cu}_{9} \mathrm{Al}\left(\mathrm{HSiO}_{4}\right)_{2}\left[\left(\mathrm{SO}_{4}\right)(\mathrm{HAsO})_{0.5}\right](\mathrm{OH})_{12} .8 \mathrm{H}_{2} \mathrm{O}$
SERIES H	CAMARONESITE, trig/R32. Kampf, A. R., Mills, S. J., Nash, B. P., Housley, R. M., Rossman, G. R., Dini, M. and Gatta G.D. (2013): Camaronesite, [$\mathrm{Fe} 3+(\mathrm{H} 2 \mathrm{O}) 2(\mathrm{PO} 3 \mathrm{OH})] 2(\mathrm{SO} 4) \cdot 1-2 \mathrm{H} 2 \mathrm{O}$, a new phosphate-sulfate from the Camarones Valley, Chile, structurally related to taranakite. Mineral. Mag. 77, 453-465.
MDFHA	CAMARONESITE $\quad \mathrm{Fe}^{3+}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot 1-2 \mathrm{H}_{2} \mathrm{O}$

TYPE G Structures with only Medium-sized Cations, (OH , etc.): $\mathrm{RO}_{4}>\mathbf{0 . 5 : 1}$

SERIES A LAVENDULAN SERIES, Mon/P21/n. The lavendulan structure is based on $\mathrm{Cu}\left(\mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{Cl}\right)_{5}$ pyramids forming [$\left.\mathrm{Cu}_{4} \mathrm{O}_{12} \mathrm{Cl}\right]$ clusters, which are connected by XO_{4} groups into heteropolyhedral sheets. These sheets ideally have p4mm symmetry and are aligned // to (010), the cleavage plane, and are linked to adjacent // sheets via NaO_{6} and caO_{7} polyhedra as well as by weak H bonding. The structue of mahnertite is dominated by mixed polyhedral sheets // (001) comprised of two symmetrically independent distorted Cu_{5} square pyramids and As tetrahedra, indentical to those found in zdenekite. The mixed polyhedral sheets in both minerals are related by different modes of stacking. Very similar sheets are found in andyrobertsite, calico-andyrobertsite (-1M), calico-andyrobersite-20,
richelsdorfite, and probably bleasdaleite, mahnerite, lemanskiite and the inadequately characterized, lavendulan-related species shubnikovite.

MDGAA
SHUBNIKOVITE
LAVENDULAN
SAMPLEITE
MAHNERTITE
ZDENEKITE
LEMANSKIITE

$$
\begin{aligned}
& \mathrm{Ca}_{2} \mathrm{Cu}_{8}\left(\mathrm{AsO}_{4}\right)_{6} \mathrm{Cl}(\mathrm{OH}) \cdot 7 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NaCaCu}_{5}\left(\mathrm{AsO}_{4}\right)_{4} \mathrm{Cl} 5 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NaCaCu}_{5}\left(\mathrm{PO}_{4}\right)_{4} \mathrm{Cl} 5 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Na}, \mathrm{Ca}) \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \mathrm{Cl} \cdot 5 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NaPbCu}_{5}\left[\mathrm{AsO}_{4}\right]_{4} \mathrm{Cl} \cdot 5 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NaCaCu}_{5}\left(\mathrm{AsO}_{4}\right)_{4} \mathrm{Cl} \cdot 5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

TYPE H \quad Structures with Large and Medium-sized Cations, (OH , etc.): $\mathrm{RO}_{4}<1: 1$

SERIES A MINYULITE, orth/Pba2. The structure consists of a dimeric cluster of two $\mathrm{Al}^{3+}-0$

 octahedra sharing one F^{-}vertex and two PO_{4} tetrahedra, which further link the octahedra. The clusters link via shared octahedral-tetrahedral vertices to form sheets parallel to $\{001\}$. Cavities in the sheets are occupied by K^{+}ions.$$
\mathrm{KAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}, \mathrm{~F}) \cdot 4 \mathrm{H}_{2} \mathrm{O}
$$

LEUCOPHOSPHITE SERIES, mon/P2 ${ }_{1} / \mathrm{n}$. The structure is based on on octahedral cluster which consists of an edge-sharing doublet whose two common corners each fuse by corner-sharing to two other octahedra forming a tetramer. The tetramer is an insular octahedral cluster and is joined to surrounding symmetry equivalent tetramers by the bridging phosphate ligands, resulting in a three-dimensional linkage of Fe-O-P-O bonds. The K ions are located in channels created by the tetramers. Structure consists of clusters of four edge- and corner-sharing Fe octahedra which are corner-linked by P tetrahedra into a framework with 8-membered channels // [010] that accommodate the large cations and water molecules.

LEUCOPHOSPHITE

MDHBB
SPHENISCIDITE
MDHBC

$$
\begin{aligned}
& \mathrm{K}_{2}\left[\mathrm{Fe}_{4}{ }^{3+}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PO}_{4}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{NH}_{4}, \mathrm{~K}\right)(\mathrm{Fe}, \mathrm{Al})_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}) \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{KAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}) \cdot 2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

JAHNSITE SERIES, mon/P2 ${ }_{1} / \mathrm{a}$. The structure is based on a backbone of corner-linked Fe-OH-Fe octahedra with a novel arrangement of phosphate tetrahedra about these chains. The structure possesses dense slabs of $\left[\mathrm{CaMnFe}_{2}(\mathrm{OH})_{2}\left[\mathrm{PO}_{4}\right]_{4}\right]^{4-}$ oriented parallel to $\{001\}$ which are bridged by PO_{4} corner-sharing to $\mathrm{Mg}\left(\mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra. Structure consists of dense slabs of edge-sharing M octahedra and P tetrahedra // (001) which are linked by corner-sharing M octahedra. Jahnsite(NaMnMg), (Na, Ca)(Mn2+, $\mathrm{Fe} 3+$)($\mathrm{Mg}, \mathrm{Fe} 3+, \mathrm{Mn} 3+$)2Fe3+2(PO4)4(OH)2(H2O)8, is a new mineral from the Sapucaia pegmatite, Conselheiro Pena pegmatite district, Minas Gerais, Brazil, and the White Rock No. 2 quarry, Bimbowrie Conservation Park, South Australia, Australia. At both localities, it is a low temperature, secondary mineral formed as the result of alteration of primary phosphates. The mineral occurs as light orange to orange-yellow prisms, elongate on [100], exhibiting the forms $\{100\},\{001\}$, and $\{011\}$ and twinned by reflection on $\{001\}$. The streak is white, the luster is vitreous, and crystals are transparent to translucent. The Mohs hardness is about 4. The tenacity is brittle, the fracture is irregular, stepped (splintery), and there is one very good cleavage on \{001\}. The measured density is $2.68(1) \mathrm{g} / \mathrm{cm} 3$ (Sapucaia). The mineral is slowly soluble in dilute HCI. Jahnsite-(NaMnMg) from Sapucaia is biaxial (-), with a 1.642(1), β 1.675(1), y 1.677 (1) (white light). The measured $2 V$ is 29(1) ${ }^{\circ}$. Dispersion is very strong, $r<v$. The optical orientation is $Z=b ; X^{\wedge} c=51^{\circ}$ in obtuse β. Pleochroism is $X=$ colorless, Y and $Z=$ orange-yellow; $Y \approx Z>X$. Electron-microprobe analyses gave the empirical formulae
 4)4(OH)1.83(H2O)8.17 for the Sapucaia material and $(\mathrm{Na} 0.63 \mathrm{Ca} 0.23 \mathrm{Mn} 2+0.14) \Sigma 1.00(\mathrm{Mn} 2+0.68 \mathrm{Mn} 3+0.26 \mathrm{Fe} 3+0.05 \mathrm{Mg} 0.01) \Sigma 1.00(\mathrm{Mg} 1.26 \mathrm{Mn} 2+0.43 \mathrm{Mn} 3+0.16 \mathrm{Fe}$ $3+0.15) \Sigma 2.00(\mathrm{Fe} 3+1.97 \mathrm{AlO} 0.02) \Sigma 1.99(\mathrm{PO} 4) 4(\mathrm{OH}) 1.98(\mathrm{H} 2 \mathrm{O}) 8.02$ for the White Rock material. The mineral is monoclinic, space group P2/a, with cell parameters (Sapucaia) a 15.1045(15), b 7.1629(2), c 9.8949(7) $\AA, \beta 110.640(7)^{\circ}, V 1001.83(13) \AA 3$, and $Z=2$. The structure refinements of crystals from both localities were generally consistent and showed the mineral to be a member of the jahnsite group (Sapucaia: R1 = 3.19\% for 1941 lo > 2бI reflections; White Rock: R1 = 6.94\% for 13485 lo >2бI reflections).
Jahnsite-(MnMnZn) (IMA2017-113), Mn2+2Zn2Fe3+2(PO4)4(OH)2•8H2O, is a new member of the jahnsite group from the Herdade dos Pendões mine, Beja district, southwest Portugal. It formed in a
highly altered gossan in association with Zn -bearing libethenite, quartz, rhodochrosite and santabarbaraite. It occurs in sub-parallel bundles of light golden brown prisms up to 0.3 mm long. Crystals are transparent with vitreous to silky lustre and white streak. The mineral is brittle with irregular, splintery fracture, good cleavage parallel to \{001\} and Mohs' hardness of about 4. The measured density is $2.89(2) \mathrm{g} \mathrm{cm}-3$. Optically, it is biaxial (+), with $\alpha=1.655(2), \beta=1.662(2), \mathrm{Y}=$ 1.673(2) (white light); $2 V=78(1)^{\circ}$; pleochroism: X nearly colourless, Y and Z beige; $X<Y \approx Z$. Electron microprobe analyses gave the empirical formula
$(\mathrm{Mn} 2+0: 71 \mathrm{Na} 0.15 \mathrm{Ca} 0.10) \Sigma 0: 96(2+1.00)(\mathrm{Zn} 1.00 \mathrm{Mn} 2+0.66 \mathrm{Fe} 2+0.21 \mathrm{Mg} 0.10 \mathrm{Fe} 3+0.03) \Sigma 2.00(\mathrm{Fe} 3+1.99 \mathrm{Al} 0.0$ 1) $\Sigma 2: 00(P 1.0104) 4(O H) 2 \cdot 8 \mathrm{H} 2 \mathrm{O}$. Jahnsite-(MnMnZn) is monoclinic, $P 2 / a, a=15.222(6), b=7.187(6), c$ $=10.028(5) A, \beta=111.746(16), V=1019.0(11) A 3$ and $Z=2$. The eight strongest lines in the X-ray powder diffraction pattern are [dobs/Å (I) (hkl)]: 9.25 (63) (001), 5.00 (40) (210,21-1,111), 4.648 (33) (002), 3.509 (41) (40-2), 2.842 (100) (022), 1.9984 (37) (422,42-4), 1.9506 (30) (024) and 1.5853 (33) (820,82-4). The jahnsite group has now been officially established by the Commission on New Minerals, Nomenclature and Classification. The general formula for jahnsite-group minerals is XM1M22M32(H2O)8 (OH)2(PO4)4; the ionic radii for the cation sites generally increase as follows: M3 $<$ M2 < M1 < X, and the M3 site determines whether the species belongs to the jahnsite subgroup (M3 $=\mathrm{Fe} 3+$) or the whiteite subgroup ($\mathrm{M} 3=\mathrm{Al}$). The subgroup name is generally used as the species root name to be followed by a suffix of the form -(XM1M2). Using this as a guide for the jahnsite described herein results in the following site assignments: $\mathrm{X}=\mathrm{Mn}, \mathrm{M} 1=\mathrm{Mn}, \mathrm{M} 2=\mathrm{Zn}$, and $\mathbf{M 3}=\mathrm{Fe}$; and the name jahnsite-(MnMnZn).

MDHCA
MDHCB
MDHCC
MDHCD
MDHCE
MDHCF
MDHCG
MDHCH
MDHCI
MDHCJ
MDHCK
MDHCL
MDHCM
MDHCN
MDHCO
MDHCP
MDHCQ
MDHCR
MDHCS
MDHCA

JAHNSITE-(CaMnFe)
JAHNSITE-(CaMnMg)
JAHNSITE-(CaMnMn)
KECKITE
RITTMANNITE
WHITEITE-(CaFeMg)
WHITEITE-(CaMnMg)
WHITEITE-(MnFeMg)
JAHNSITE-(MnMnMn)
XANTHOXENITE (Related)
JAHNSITE-(NaFeMg)
WHITEITE-(CaMnMn)
JAHNSITE-(CaFeMg)
WHITEITE-(MnMnMg)
WHITEITE-(CaMgMg)
JAHNSITE-(MnMnZn)
JAHNSITE-(MnMnMg)
JAHNSITE-(NaMnMg)
HAHNSITE-(MnMnFe)

$$
\begin{aligned}
& \mathrm{CaMnFe}{ }_{2} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaMn}(\mathrm{Mg}, \mathrm{Fe})_{2} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaMnMn} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaMn}^{2+}\left(\mathrm{Fe}^{3+} \mathrm{Mn}^{2+}\right) \mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Mn}, \mathrm{Ca}) \mathrm{Mn}(\mathrm{Fe}, \mathrm{Mn})_{2}(\mathrm{Al}, \mathrm{Fe})_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}(\mathrm{Fe}, \mathrm{Mn}) \mathrm{Mg}_{2} \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaMnMg} 2_{2} \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Mn}, \mathrm{Ca})(\mathrm{Fe}, \mathrm{Mn}) \mathrm{Mg}_{2} \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaMnMn} 2 \mathrm{Mn}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{4} \mathrm{Fe}_{2}{ }^{3+}\left[\mathrm{OH} /\left(\mathrm{PO}_{4}\right)_{2}\right]_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NaFe}^{3+} \mathrm{Mg}_{2} \mathrm{Fe}_{3}{ }^{2+}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaMnMn} n_{2} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaFeMg} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mn}^{2+} \mathrm{Mn}^{2+} \mathrm{Mg}_{2} \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaMg}_{3} \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MnMnZn}_{2} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mn}^{2+} \mathrm{Mn}^{2+} \mathrm{Mg}_{2} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Na}, \mathrm{Ca})(\mathrm{Mn}, \mathrm{Fe})\left(\mathrm{Mg}, \mathrm{Fe}_{2}\right)_{2} \mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \\
& \mathrm{Mn}^{2+} \mathrm{Mn}^{2+} \mathrm{Fe}^{2+} \mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIEC D OVERITE SERIES, orth/Pcca. These structures contain similar slabs to those of the Jahnsite group, but the M octahedra linking the slabs are oriented differently.

MDHDA
MDHDB
MDHDC
MDHDD
MDHDE
MDHDF
SERIES E

LUN'OKITE
MANGANOSEGELERITE
OVERITE
SEGELERITE
WILHELMVIERLINGITE
JUONNIITE

```
(Mn,Ca)(Mg,Fe,Mn)Al(PO4)2(OH)}4\mp@subsup{\mp@code{H}}{2}{}\textrm{O
(Mn,Ca)(Mn,Fe,Mg)Fe(PO
CaMgAl(PO4)2(OH)}4\mp@subsup{4}{2}{
CaMgFe(PO
CaMnFe(PO4)2(OH)}44\mp@subsup{\textrm{H}}{2}{}\textrm{O
CaMgSc(PO4)2(OH)}4\mp@subsup{\textrm{H}}{2}{}\textrm{O
```

$(\mathrm{Mn}, \mathrm{Ca})(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Mg}) \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}) \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CaMgAl}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}) \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CaMgFe}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}) \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CaMnFe}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}) \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CaMgSc}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH}) 4 \mathrm{H}_{2} \mathrm{O}$

MONTGOMERYITE SERIES, mon/C2. Structure consists of chains of corner-sharing AI octahedra // [001] which are edge-linked by P tetrahedra to form slabs // (010). The slabs are linked by Mg

MDHEA
MDHEB
MDHEC
MDHED
MDHEE
MDHEF
octahedra and Ca polyhedra. Fanfaniite, Ca 4 Mn 2+ Al 4 (PO 4) 6 (OH,F) 4 A12H 2 O, is a new secondary phosphate mineral from the Foote spodumene mine, 14 North Carolina, USA and the Hagendorf-Süd pegmatite, Bavaria, Germany. At the Foote mine, it forms radial aggregates up to 15 0.5 mm in diameter of colourless, transparent, thin blades, flattened on \{010\} and elongated on [001], associated with whiteite-16 (CaMnMn). At Hagendorf-Süd, the mineral occurs as isolated very thin laths on the surface of fibrous spheroids of kayrobertsonite 17 and is associated with altered triplitezwieselite and whiteite-(CaMnMn). The measured density (Foote mine) is 2.58(2) g cm A3. 18 Optically, fanfaniite (Foote mine) is biaxial (-), with $a=1.573(2), b=1.582(2), c=1.585(2)$ and $\mathbf{2 V}($ meas $)=57(1)^{\circ}$. Dispersion was 19 not observed. The optical orientation is: $Z=b, X^{\wedge} c \% 40^{\circ}$ in b obtuse. Pleochroism was not evident. Electron microprobe analyses 20 gave the empirical formulas Ca 3.91 Mn 2p 0:77 Mg 0.10 Zn 0.02 Al 3.89 Fe 3p 0:21 (PO 4) 6 (OH) 3.90 (H 2 O) 12.10 (Foote mine) and Ca 3.73 Mn 2p 0:76 Mg 0.25 21 Zn 0.08 Al 3.89 Fe 3p 0:29 (PO 4) 6 F 1.10 (OH) 3.08 (H 2 O) 11.82 (Hagendorf-Süd). Fanfaniite has monoclinic symmetry, space group C2/c, with $22 a=10.021(4) \AA, b=$
 obs $=0.043$ for 1909 unique reflections to a resolution of $0.7 \AA$. Fanfaniite is the Mn 2+-dominant analogue of montgomeryite. The 24 name honours Luca Fanfani who structurally characterised many phosphate minerals including montgomeryite. 25

SERIES F MATRIDATITE SERIES, mon/A2/a. Structure consists of edge-sharing MO_{6} octahedra forming

 trigonal 9-membered rings that are linked into sheets // (001) by corner-sharing RO_{4} tetrahedra; the sheets are linked by Ca polyhedra and water molecules. Kittatinnyite belongs here. The structure of sailaufite contains characteristic nonamer rings of edge-sharing MnO_{6} octahedra forming compact pesudotrigonal $\left[\mathrm{Mn}_{9} \mathrm{O}_{6}\left(\mathrm{AsO}_{4}\right)_{6}\left(\mathrm{CO}_{3}\right)_{3}\right]^{9-}$ sheets which are linked by layers somposed of $(\mathrm{Ca}, \mathrm{Na}) \mathrm{O}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ polyhedra and isolated water molecules, the octahedral nonamer rings correspond to those coccuring in the Fe phosphate mitridatite.MDHFA
MDHFB
MDHFC
MDHFD
MDHFE
MDHFF
MDHFG
MDHFH
MDHFI
MDHFJ

SERIES G MANTIENNEITE SERIES, orth/Pbca. Structure consists of corner-sharing M and Ti octahedra which are linked into a framework by P tetrahedra; large cavities are occupied by K and water molecules.

MDHGA
MDHGB
MDHGC

ARSENIOSIDERITE $\quad \mathrm{Ca}_{6} \mathrm{Fe}_{9} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{AsO}_{4}\right)_{9} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
ROBERTSITE
$\mathrm{Ca}_{2} \mathrm{Mn}_{3} \mathrm{O}_{2}\left(\mathrm{PO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ca}_{6} \mathrm{Fe}_{9} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{PO}_{4}\right)_{9} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ca}_{2} \mathrm{Mn}_{3} \mathrm{O}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{PO}_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ AM2000-1302
$\mathrm{Ca}_{2} \mathrm{Fe}_{3} \mathrm{O}_{2}\left(\mathrm{AsO}_{4}\right)_{3} 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{Ca}_{10} \mathrm{Al}_{15}\left(\mathrm{PO}_{4}\right)_{21}(\mathrm{OH})_{7} \cdot 26 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ca}_{2} \mathrm{Mn}_{3} \mathrm{O}_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{CO}_{3}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ca}_{2} \mathrm{Fe}_{3-5}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4-10} \cdot 2-11 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ca}_{4} \mathrm{Mn}_{6}\left[\mathrm{AsO}_{4}\right]_{4}(\mathrm{OH})_{8} \cdot 18 \mathrm{H}_{2} \mathrm{O} \quad$ hex $/ \mathrm{Pb}_{3} / \mathrm{mmc}, \mathrm{P6}_{3} \mathrm{mc}$, or $\mathrm{P} \underline{6} 2 \mathrm{c}$
$(\mathrm{Ca}, \mathrm{Cu})_{4} \mathrm{Fe}_{6}\left[\mathrm{AsO}_{4}\right]_{4}(\mathrm{OH})_{8} \cdot 18 \mathrm{H}_{2} \mathrm{O}$

MANTIENNEITE

$$
\begin{aligned}
& \mathrm{KMg}_{2} \mathrm{Al}_{2} \mathrm{Ti}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{3} \cdot 15 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~K}(\mathrm{Mg}, \mathrm{Mn})_{2}(\mathrm{Fe}, \mathrm{Al})_{2} \mathrm{Ti}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{3} \cdot 15 \mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{H}_{2} \mathrm{O}, \mathrm{~K}\right)_{2} \mathrm{Ti}(\mathrm{Mn}, \mathrm{Fe})_{2}(\mathrm{Fe})_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{O}, \mathrm{~F})_{2} \cdot 14 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

CALCIOFERRITE
KINGSMOUNTITE
MONTGOMERYITE
ZODACITE
ANGASTONITE
FANFANIITE

$$
\begin{aligned}
& \mathrm{Ca}_{4} \mathrm{Fe}(\mathrm{Fe}, \mathrm{Al})_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} \cdot 13 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Ca}, \mathrm{Mn})_{4}(\mathrm{Fe}, \mathrm{Mn}) \mathrm{Al}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{3} \mathrm{MnFeAl}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{4} \mathrm{MnFe}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaMgAl}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}_{3} \mathrm{Mn}^{2+} \mathrm{Fe}^{2+} \mathrm{Al}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

tetrahedral coordination. One of the As sites is coordinated by two O atoms and two (OH) groups to form a doubly acid arsenate group, $\left[\mathrm{As}(\mathrm{OH})_{2} \mathrm{O}_{2}\right]$. There are four crystallographically distinct Cu sites, each occupied by Cu^{2+} in square-pyramidal coordination. There is one crystallographically distinct M site occupied by Cd , Ca and Mn^{2+} coordinated by four O atoms and two water groups in a trigonal-prismatic arrangement. Variation in the occupancy of this site gives rise to the two related species andyrobersite (Cd dominant) and calico-andyrobersite (Ca dominant). There is one distint K site occupied by K and coordinated by four O atoms, two (OH) groups and two water groups in a distorted-cube arrangement. Four $\left(\mathrm{CuO}_{5}\right)$ polyhedra link to a central anion to form a $\left[\mathrm{Cu}_{4} \mathrm{O}_{13}\right.$] group. The anions at the base of this group corner-share to four arsenate tetrahedra that link to a fift [CuO_{5}] square pyramid. A single ($\mathrm{As} \varphi_{4}$) tetrahedron links to the central anion of the $\left[\mathrm{Cu}_{4} \mathrm{O}_{13}\right.$] group to form $\mathrm{a}_{4}\left[\mathrm{Cu}_{5}\left(\mathrm{AsO}_{4}\right)_{4}\left(\mathrm{AsO}_{4}\right)_{4}\left(\mathrm{As}_{4}\right) \mathrm{O}_{9}\right]$ cluster. These clusters are arranged at the vertices of non-coplanar 4^{4} nets // to (100) and corner-link to form a heteropolyhedral framework with interstitial M and K sites between adjacent 4^{4} nets. Structurally related to the Lavendulan Group. The crystal structure of epifanovite contains four symmetrically independent Cu sites, each coordinated by five \mathbf{O} atoms by forming short equatorial ($1.905-1.964 \AA$) and one elongated ($2.467-2.720 \AA$) $\mathrm{Cu}-\mathrm{O}$ bonds. Four CuO5 pyramids centered by the Cu2, Cu3 and Cu4 sites are linked at the O11 atom to form [Cu4O13] tetramers. The [Cu4O13] tetramers and Cu1O5 pyramids are linked via phosphate groups into the complex, which is incrustated by disordered [AsO2(OH)2]- group to form fundamental building blocks in the structure. The blocks are linked through phosphate groups to form layers parallel to the (001) plane. The layers are joined into a three-dimensional framework by sharing of the apical atoms of the Cu1O5 pyramids and O atoms of disordered arsenate groups. Epifanovite is related to the group of minerals and inorganic compounds based upon the [Cu4O(TO4)4] layers (T = As, P). The most closely related to epifanovite are monoclinic polytypes of the andyrobertsitecalcioandyrobertsite KMeCu5(AsO4)4[As(OH)2O2]2H2O (Me = Cd, Ca).

Cooper, M.A., Hawthorne, F.C., Pinch, W.W., and Grice, J.D. (1999) Andyrobertsite and calcioandyrobertsite, two new minerals from the Tsumeb Mine, Tsumeb, Namibia. Mineralogical Record: 30: 181-186.

Cooper, M.A. and Hawthorne, F.C. (2000): Highly undersaturated anions in the crystal structure of andyrobertsite - calcio-andyrobertsite, a doubly acid arsenate of the form $\mathrm{K}(\mathrm{Cd}, \mathrm{Ca})[\mathrm{Cu} 2+$ 5(AsO4)4\{As(OH)2O2\}](H2O)2. Canadian Mineralogist: 38: 817-830.
Structurally related to the Lavendulan Group.

MDHHA
MDHHB
MDHHC

ANDYROBERTSITE
CALCIO-ANDYROBERTSITE
EPIFANOVITE

$$
\begin{aligned}
& \mathrm{KCd}\left[\mathrm{Cu}^{2+}{ }_{5}\left(\mathrm{AsO}_{4}\right)_{4}\left\{\mathrm{As}(\mathrm{OH})_{2} \mathrm{O}_{2}\right\}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{KCa}\left[\mathrm{Cu}^{2+}{ }_{5}\left(\mathrm{AsO}_{4}\right)_{4}\left\{\mathrm{As}(\mathrm{OH})_{2} \mathrm{O}_{2}\right\}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \\
& \mathrm{NaCaCu}_{5}\left(\mathrm{PO}_{4}\right)_{4}\left[\mathrm{AsO}_{2}(\mathrm{OH})_{2}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES I

MDHIA

SERIES J

MDHJA
NEVADAITE
$\left(\square, \mathrm{Cu}^{2+} \mathrm{V}^{3+}\right)_{8} \mathrm{Al}_{8}\left(\mathrm{PO}_{4}\right)_{8} \mathrm{~F}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{23}$
$(\mathrm{Cu}, \mathrm{VO}) \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~F}, \mathrm{OH})_{2} \cdot 4 \cdot 5-5 \mathrm{H}_{2} \mathrm{O}$

SERIES K	ARSMIRANDITE, mon/C2/m. Pekov, I.V., Britvin, S.N., Yapaskurt, V.O., Polekh S.V., Vigasina, M.F. and Sidorov, E.G. (2015) Arsmirandite, IMA 2014-081. CNMN February 2015, page 57; Mineralogical Magazine, 79, 51-58.	
	ARSMIRANDITE	$\mathrm{Na}_{18} \mathrm{Cu}_{12} \mathrm{Fe}^{3+} \mathrm{O}_{8}\left(\mathrm{AsO}_{4}\right)_{8} \mathrm{Cl}_{5}$
MDHKA	LEMANNITE	$\mathrm{Na}_{18} \mathrm{Cu}_{12} \mathrm{TiO}_{8}\left(\mathrm{AsO}_{4}\right)_{8} \mathrm{FCl}_{5}$
MDHKB		
SERIES L	ESPADAITE, orth/Ccce.	
MDHLA	ESPADAITE	$\mathrm{Na}_{4} \mathrm{Ca}_{3} \mathrm{Mg}_{2}\left[\mathrm{AsO}_{3}(\mathrm{OH})\right]_{2}\left[\mathrm{AsO}_{2}(\mathrm{OH})_{2}\right]_{10} .7 \mathrm{H}_{2} \mathrm{O}$

TYPE I Structures with Large and Medium-sized Cations, (OH , etc.): $\mathrm{RO}_{4}=1: 1$

SERIES A OLMSTADITE SERIES. Orth/Pb2 ${ }_{1}$. Structure consists of edge-sharing Feoctahedra forming linear chains // [001]; the chains are linked by corner-sharing Nb octahedra and P tetrahedra, and by K polyhedra.

$$
\mathrm{K}_{2} \mathrm{Fe}_{2}\left[\mathrm{Mn}_{2}(\mathrm{Nb}, \mathrm{Ta})_{2} \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{PO}_{4}\right)_{4}\right]
$$

SERIES B GATUMBAITE, mon/. Structure not known. von Knorring, O \& A-M. Fransolet (1977): "Gatumbaite, a new species from Buranga pegmatite, Rwanda": Neues Jahrb. Mineral., Monatsh: 12: 561-568; Am.Min.: 63: 793-794.(abstract)

Duggan,M.B., et al. (1990): "Phosphate minerals in altered andesite from Mount Perry, Queensland, Australia": Can. Min.: 28: 125-131.

MDIBA

SERIES C

MDICA

SERIES D
Walenta, K. \& Dunn, P. J. (1984): Phosphofibrit, ein neues Eisenphosphat aus der Grube Clara im mittleren Schwarzwald (BRD). Chem. Erde, 43, 11-16. (in German).

American Mineralogist (1984): 69: 1192.
Kolitsch, U. (1999): Evidence for the identity of meurigite and phosphofibrite by transmission electron microscopy and X-ray powder diffraction. European Journal of Mineralogy: 11, Beih. no.1, 132.

Kampf, A. R., J.J. Pluth, \& Y. Chen (2007): The crystal structure of meurigite. American Mineralogist 92, 1518-1524
A. R. Kampf and U. Kolitsch (2008): The relationship between phosphofibrite and meurigite. M\&M6, 6th Intern. Conf. on Mineralogy \& Museums, Colorado School of Mines, Golden, Colorado, USA, September 79, 2008; Program and Abstract Volume, 26.
]2A. R. Kampf, P. M. Adams, U. Kolitsch and I. M. Steele (2009): Meurigite-Na, a new species, and the relationship between phosphofibrite and meurigite. Am. Mineral. 94, 720-727.

SERIES E JUNGITE, orth/Pcmm. The structure of skorpionite consists of ZnO_{4} and PO_{4} tetrahedra forming corner linked to result in corrugated sheets. The structure forms a th ree-dimensional network of $\left[\mathrm{Ca}_{2} \mathrm{Zn}_{2}(\mathrm{OH})_{2}\left(\mathrm{PO}_{4}\right)_{2}\right]^{0}$ and $\left[\mathrm{Ca}\left(\mathrm{CO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{0}$ layers that are linked by H bonds and by $\mathrm{Ca}-\mathrm{O}$ bonds. American Mineralogist (1980): 65: 1067. Borg, G., Karner, K., Buxton, M., Armstrong, R., Schalk van der Merwe, W. (2003) Geology of the Skorpion supergene zinc deposit, southern Namibia. Economic Geology, 98, 749-771.

Krause, W., et al. (2008) Skorpionite, a new mineral from Namibia: description and crystal structure. Eur. J. Mineralogy 20, 271-280.

MDIEA

SERIES F WYCHEPROOFITE, tric/P1. Structure characterized by two different alternating layers // to (001); the first layer is composed of corner-linked ZrO_{6} octahedra and P tetrahedra. The second layer is built from zigzag chains of edge-sharing $\mathrm{AlO}_{2}(\mathrm{OH})_{4}$ octahedra along [100], and of $\mathrm{Na}(1)-\mathrm{O}_{3}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2-y}$ polyhedra. Adjacent layers are connected by O ligands shared between P tetrahedra and $\mathrm{AlO}_{2}(\mathrm{OH})_{4}$ octahedra. Only very weak H bonding is necessary to reinforce the structural framework. A close relationship exists to thefamily of yavapaiite-related layered $\mathrm{AM}\left(\mathrm{XO}_{4}\right)_{2}$ compounds. Eur. Jour. Min., 15, 6, 1029-1034. Comparisons with the structures of the few other known natural Zr phosphates such as kosnarktie, selwynite, mahlmoodite demonstrates that a heteropolyhedral layer composed of corner-linked PIO_{4} tetrahedra and ZrO_{6} octahedra is a common structural feature of several of these phosphates, and that it links them closely to the family of yavapaiite-related layered $A M\left(\mathrm{XO}_{4}\right)_{2}$ compounds.
MDIFA WYCHEPROOFITE $\mathrm{NaAIZr}\left[\mathrm{PO}_{4}\right]_{2}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

SERIES G BRAITHWAITEITE, tri/P1. The structure motif consists of a chain of corner-sharing ($\mathrm{Sb}, \mathrm{TiO}_{6}$) octahedra that is decorated with AsO_{4} tetrahedra to form a [(SbTi) $\left(\mathrm{AsO}_{4}\right)_{4} \mathrm{O}_{2}$] chain that extends along the a-direction and defines the cell dimension in this direction at about 7A. These chains are cross-linked in the b-direction by chains of edge-sharing $\left(\mathrm{CuO}_{6}\right)$ octahedra that are decorated by arsenate tetrahedra to form a $\left[\mathrm{Cu}_{2}\left(\mathrm{AsO}_{4} \mathrm{OH}\right)_{2} \mathrm{O}_{4}\right]$ chain; these two chains link to form a sheet // to (001). These sheets stack along the c-direction anda re linked by CuO_{6} and NaO_{6} octahedra, together with an extensive network of H bonds.

MDIGA BRAIATHWAITEITE $\mathrm{NaCu}_{5}\left(\mathrm{SbTi}^{2} \mathrm{O}_{2}\left(\mathrm{AsO}_{4}\right)_{4}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2} .8 \mathrm{H}_{2} \mathrm{O}\right.$

SERIES H ANGARFITE, orth/C222 ${ }_{1}$. The structure contains zig-zag chains of edge-sharing $\mathrm{Fe}^{3+} \mathrm{O}_{6}$ octahedra along c , which are linked into sheets // to $\{010\}$ by sharing corners with octahedral in adjacent chains and by sharing corners with peripheral PO_{4} tetrahedra. Insular octahedral between the sheets share two sets of cis corners with tetrahedral in adjacent sheets, thereby linking the sheets into a framework. Channels in the framework // to c contain a partially occupied Na site and a disordered water site. Ildentical sheets of octahedra and tetrahedra are found in the structures of bakhchisaraitsevite and mejilonesite.

SERIES I GLADIUSITE, mon/P2 $/ \mathrm{n}$. Structure consists of one P site tetrahedrally coordinated by four O atoms. There are six distinct octahedrally coordinated M sites containing $\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}$, $\mathbf{M g}$, and Mn^{2+}, the octahedra are coordinated by O aoms, OH and water groups. The M_{6} octahddra each share two trans edges to form a rutile-like M_{4} chain along [001]. Pairs of chains shifted relative to each other by a half-octahedron, link together through common edges to form a ribbon extending along \mathbf{c}; thus, each octahedron shares four edges with other octahedra. These ribbons are connected through common vertices of the M octahedra into a framework with channels along the \mathbf{c} axis. The P tetrahedra share each of two vertices with three M octahedra and the remaining two vetices are connected to octahedra through H bonds. There is a system of H bonds in the structure, some of them bifurcated.. Liferovich, R.P., Sokolova, E.V., Hawthorne, F.C., Laajoki, K.V.O., Gehör, S., Pakhomovsky, Ya.A., and Sorokhtina, N.V. (2000) Gladiusite, Fe 3+2(Fe 2+,Mg)4(PO4)(OH)11(H2O), a new hydrothermal mineral species from the phoscorite-carbonatite unit, Kovdor complex, Kola Peninsula, Russia. Canadian Mineralogist: 38: 1477-1485.

GLADIUSITE

$$
\mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{Fe}^{2+}, \mathrm{Mg}\right)_{4}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})_{11}\left(\mathrm{H}_{2} \mathrm{O}\right)
$$

SERIES J HAIGERACHITE, mon/B2/b. Walenta, K. and Theye, Th. (1999): Haigerachit, ein neues Phosphatmineral von der Grube Silberbrünnle bei Gengenbach im mittleren Schwarzwald. Aufschluss, 50, 1-7. (in German).

	Waerstad, K. R. \& Frazier, A. W. (1987): X-ray powder diffraction and single-crystal data for the isomorphous series (Fe,Al)3(K,NH4,H3O)H14(PO4)8.4H2O. Powder Diffraction 2, 187-190. Anisimova, N., Chudinova, N. \& Serafin, M. (1997): Preparation and crystal structure of potassium iron hydrogen phosphate KFe3(HPO4)2(H2PO4)6.4(H2O). Zeitschrift für Anorganische und Allgemeine Chemie 623, 1708-1714.
MDIJA	HAIGERACHITE $\mathrm{KFe}^{2+}{ }_{3}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{6}\left(\mathrm{HPO}_{4}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$
SERIES K	PAGANOITE, tric/ P1. The structure contains As tetrahedra and distorted $\mathrm{Ni}^{2+} \mathrm{O}_{6}$ octahedra, as wella as one-sided BiO_{5} polyhedra due to the presence of an s^{2} lone pair of electrons on the Bi cation. The structure is an open framework composed dimers of edge-sharing NiO^{6} that are linked b y vertex sharing with As tetrahedra. Bi cations occur within voids in the framework, and bond only to framework elements. The structure of paganoite is very closely related to that of jaowerite, which possesses an identical framew3ork of octahedra and tetraheddra. A.C. Roberts, P.C. Burns, R.A. Gault, A.J. Criddle, M.N. Feinglos \& J.A.R. Stirling (2001): Paganoite, NiBi3+As5+O5, a new mineral from Johanngeorgenstadt, Saxony, Germany: Description and crystal structure.- European Journal of Mineralogy 13, 167-175.
MDIKA	PAGANOITE $\mathrm{Ni}(\mathrm{BiO})\left(\mathrm{AsO}_{4}\right)$
SERIES L	KOLOVRATITE, no structure known, question of validity. Vernadsky (1922) Comptes rendus de académie des sciences Russie: 37.
	Palache, C., Berman, H., \& Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 1048-1049.
	Jambor, J.L. and G.R. Lachance (1962) On kolovratite. Canadian Mineralogist, 7, 311-314.
	American Mineralogist (1962): 47: 1222 (abstract).
	Pekov, I.V. (1998) Minerals first discovered on the territory of the former Soviet Union, 116.Vernadsky (1922) Comptes rendus de académie des sciences Russie: 37.
	Palache, C., Berman, H., \& Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 1048-1049.
	Jambor, J.L. and G.R. Lachance (1962) On kolovratite. Canadian Mineralogist, 7, 311-314.
	American Mineralogist (1962): 47: 1222 (abstract).
	Pekov, I.V. (1998) Minerals first discovered on the territory of the former Soviet Union, 116.
MDILA	KOLOVRATITE Q/D Ni-Zn hydrous vanadate
SERIES M	CATALANOITE, orth/lbca (no data). Preliminary data, partly from IMA-CNMMN list of new minerals approved in 2002; partly from info provided to the press by Mz. Teresita del Valle Ruiz, Universidad de Salta.
MDIMA	CATALANOITE $\mathrm{Na}_{2} \mathrm{H}\left(\mathrm{PO}_{4}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$
SERIES N	SVENEKITE, tri/P1. The structure consists of corner-sharing CaO_{8} polyhedra and $\mathrm{AsO}_{2} \mathrm{OH}_{2}$ groups, stacked // to (001). Adjacent sheets are linked by H bonds. The structure possesses very short H bonds. Journal of the Czech Geological Society, Prague (2003): 48(3-4): 151. P. Ondruš, R. Skála, J. Plášil, J. Sejkora, F. Veselovský, J. Čejka, A. Kallistová, J. Hloušek, K. Fejfarová, R. Škoda, M. Dušek, A. Gabašová, V. Machovič, L. Lapčák (2013): Švenekite, $\mathrm{Ca}[\mathrm{AsO2}(\mathrm{OH}) 2] 2$, a new mineral from Jáchymov, Czech Republic. Mineral. Mag. 77, 2711-2724.
MDINA	SVENEKITE $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)_{2}$
SERIES 0	MEJILLONESITE, orth/Pbca. The structure contains zigzag chains of edge-sharing $\mathrm{Fe}^{3+}-\mathrm{O}_{6}$ octahedra anong c, which are linked into sheets parallel to $\{010\}$ by sharing corners with octahedral in adjacent

chains. As in mejillonesite, the sheets are decorated with phosphate tetrahedral. The structure is related to that of angarfite and bakhchisaraitsevite.

TYPE J Structures with Large and Medium-sized Cations, (OH , etc.): $\mathrm{RO}_{4}>1: 1$ and

SERIES A SANTAFEITE, orth/B2212. Structure not known.
Sun, M. S. and R.H. Weber (1958): Santafeite, a new hydrated vanadate from New Mexico. American Mineralogist 43, 677-687.

Dunn, P.J. and D.R. Peacor (1986): Santafeite, a re-examination and new empirical formula. Mineralogical Magazine 50, 299-300. [abstract: American Mineralogist (1987): 72: 1028].

SANTAFEITE

$$
(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Al}, \mathrm{Mg})_{8}(\mathrm{Mn}, \mathrm{Mn})_{8}(\mathrm{Ca}, \mathrm{Sr}, \mathrm{Na})_{12}\left[\left(\mathrm{VO}_{4}\right)\left(\mathrm{AsO}_{4}\right)\right]_{16}(\mathrm{OH})_{20} \cdot 8 \mathrm{H}_{2} \mathrm{O}
$$

PHARMACOSIDERITE SERIES, cub/P43m. Structure consists of clusters of 4 edge-sharing Fe octahedra which are linked by six As tetrahedra to form a framework with large cavities that contain water molecules and the large cations. The structure of liskeardite is of an open framework type in which intersecting polyhedral slabs // to (101) and (101) form channels along [010], with water molecules occupying the channels. Small amounts of Na, K, and Cu are probably absorbed at the channel walls. The framework comprises columns of pharmacoalumite-type, intergrown with chiral chains of six cis edge-shsaried octahedral. Ist can be described in terms of cubic close packing, with vacancies ata both the anion and cations sites. The compositional and structural relationships between liskeardite and pharmacoalumite are discussed.

MDJBA
MDJBB
MDJBC
MDJBD
MDJBE
MDJBF
MDJBG
MDJBH
MDJBI
MDJBJ
MDJBK
MDJBL
MDJBM

PHARMACOALUMITE
PHARMACOSIDERITE
NATROPHARMACOSIDERITE
BARIOPHARMACOSIDERITE
HYDRONIUMPHARMACOSIDERITE
NATROPHARMACOALUMITE
BARIOPHARMACOALUMITE
HYDRONIUMPHARMACOALUMITE
LISKEARDITE
CAESIUMPHARMACOSIDERITE
STRONTIOPHARMACOSIDERITE
THALLIUMPHARMACOSIDERITE PLUMBOPHARMACOSIDERITE

$$
\begin{aligned}
& \mathrm{KAl}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4} \cdot 6-7 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{KFe}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4} \cdot 6-7 \mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{Na}_{3} \mathrm{~K}\right) \mathrm{Fe}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4} \cdot 6-7 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{BaFe}_{8}\left[\mathrm{AsO}_{4}\right]_{6}(\mathrm{OH})_{8} \cdot 14 \mathrm{H}_{2} \mathrm{O}(?) \\
& \left(\mathrm{H}_{3} \mathrm{O}\right) \mathrm{Fe}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NaAl}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ba}_{0.5} \mathrm{Al}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{H} 3 \mathrm{O}) \mathrm{Al}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4} \cdot 4 \cdot 5 \mathrm{H}_{2} \mathrm{O} \\
& {\left[\left(\mathrm{Al}, \mathrm{Fe}_{32}\right)_{32}\left(\mathrm{AsO}_{4}\right)_{18}(\mathrm{OH})_{42}\left(\mathrm{H}_{2} \mathrm{O}\right)_{22} \cdot 52 \mathrm{H}_{2} \mathrm{O}\right.} \\
& \mathrm{CsFe}_{4}\left[\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Sr}_{0.5} \mathrm{Fe}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{TIFe}_{4}\left[\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4}\right]_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~Pb}_{0.5} \mathrm{Fe}_{4}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

DUFRENITE SERIES, mon/C2/c. Structure consists of clusters of 3 face-sharing M octahedra and corner-sharing octahedra triplets which are linked into slabs // (100) by P tetrahedra; water molecules and the large cations are accommodated in cavities in the structure.
The structure of meurigite is a framework consisting of face-sharing octahedral $\mathrm{Fe}_{23} \mathrm{O}_{9}$ dimers, which are linked by sharing corners with corner-sharing dimers and isolated $\mathrm{Fe}_{3+} \mathrm{O}_{6} \mathrm{Octahedra}^{2}$ to form thick slabs of octahedra parallel to the a-c plane. PO_{4} tetrahedra further link octahedra within the slabs and also link slabs to one another perpendicular to the a-c plane. Relatively large channels through the framework along the b axis contain disordered K atoms and $\mathrm{H}_{2} \mathrm{O}$ molecules, which take part in two overlapping arrays. Partial vacancies in the Fe and P sites may account for discrepancies between the empirical and ideal chemical formulas. Packing considerations suggest that the empirical formula should be based on the total number of large ions ($\mathrm{K}+\mathrm{Na}+\mathrm{O}=38.5$ per formula unit), which for the chemical analysis provided in the original description yields [($\left.\mathrm{K}_{0.91} \mathrm{Na} \mathrm{a}_{0.03}\right)_{\Sigma 0.94}$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2.56}\right]_{5.550}\left[\left(\mathrm{Fe}_{3+7.52} \mathrm{Al}_{0.17} \mathrm{Cu}_{0.03}\right)_{57.72}\left(\mathrm{PO}_{4}\right)_{5.48}\left(\mathrm{CO}_{3}\right)_{0.21}(\mathrm{OH})_{7.20}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5.23}\right]$. The meurigite structure is related to those of other P brous ferric phosphates with 5 A P ber axes and shows a particularly close relationship with the structure of dufrénite. Crystal chemical evidence suggests that, even if
meurigite and phosphob brite are isostructural, phosphoP brite may qualify as a distinct species based upon its low K content (<0.5 apfu based on a recalculation of the original chemical analysis).

Walenta, K. \& Dunn, P. J. (1984): Phosphofibrit, ein neues Eisenphosphat aus der Grube Clara im mittleren Schwarzwald (BRD). Chem. Erde, 43, 11-16. (in German).

American Mineralogist (1984): 69: 1192.
Kolitsch, U. (1999): Evidence for the identity of meurigite and phosphofibrite by transmission electron microscopy and X-ray powder diffraction. European Journal of Mineralogy: 11, Beih. no.1, 132.

Kampf, A. R., J.J. Pluth, \& Y. Chen (2007): The crystal structure of meurigite. American Mineralogist 92, 1518-1524.
A. R. Kampf and U. Kolitsch (2008): The relationship between phosphofibrite and meurigite. M\&M6, 6th Intern. Conf. on Mineralogy \& Museums, Colorado School of Mines, Golden, Colorado, USA, September 79, 2008; Program and Abstract Volume, 26.
A. R. Kampf, P. M. Adams, U. Kolitsch and I. M. Steele (2009): Meurigite-Na, a new species, and the relationship between phosphofibrite and meurigite. Am. Mineral. 94, 720-727.

MDJCA	DUFRENITE
MDJCB	BURANGAITE
MDJCC	NATRODUFRENITE
MDJCD	MEURIGITE-K
MDJCE	MATIOLIITE
MDJCF	MEURIGITE-Na
MDJCG	GAYITE
MDJCH	PHOSPHOFIBRITE

$$
\begin{aligned}
& \mathrm{Ca}_{0.5} \mathrm{Fe}_{6}(\mathrm{OH})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PO}_{4}\right)_{4} \\
& (\mathrm{Na}, \mathrm{Ca})_{2}(\mathrm{Fe}, \mathrm{Mg})_{2} \mathrm{Al}_{10}\left(\mathrm{PO}_{4}\right)_{8}(\mathrm{OH}, \mathrm{O})_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Na}(\mathrm{Fe}, \mathrm{Fe})\left(\mathrm{Al}, \mathrm{Fe}_{5}\right)_{5}(\mathrm{OH})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PO}_{4}\right)_{4} \\
& {\left[\mathrm{~K}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2.5}\right]\left[\mathrm{Fe}_{8}^{3+}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]} \\
& \mathrm{NaMgAl}_{5}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& {\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2.5}\right]\left[\mathrm{Fe}^{3+}{ }_{8}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]} \\
& \mathrm{NaMn}{ }^{2+} \mathrm{Fe}^{3+}{ }_{5}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{6} .2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{KCuFe}_{15}\left(\mathrm{PO}_{4}\right)_{12}(\mathrm{OH})_{12} \cdot 12 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES D	KIDWELLITE-MATULAITE SERIES, mon/P2/c. The structure contains seven-member chain segments of AIO_{6} octahedra decorated by PO_{4} tetrahedra. The PO 4 tetrahedra also link to isolated FeO_{6} octaheda, resulting in a pinwheel $\left(\mathrm{FePO}_{4}\right)_{6}$ group. The linkage of octahedra and tetrahedra defines a thick layer // to \{001\}. The only linkage between layers is via H bonding to interlayer water molecules. Moore, P.B. and J. Ito (1980) Jungit und Matulait: Zwei neue taflige Phosphat-Mineralien. Aufschluss, 31, 55-61 (in German with English abs.). American Mineralogist (1980): 65: 1067. Kampf, A.R., Mills, S.J., Rossman, G.R., Steele I.M., Pluth, J.J. and Favreau, G. (2011) Afmite, $\mathrm{Al} 3(\mathrm{OH}) 4(\mathrm{H} 2 \mathrm{O}) 3(\mathrm{PO} 4)(\mathrm{PO} 3 \mathrm{OH}) \cdot \mathrm{H} 2 \mathrm{O}$, a new mineral from Fumade, Tarn, France: description and crystal structure. European Journal of Mineralogy, 23, 269-277. [mentions new formula of matulaite] Kampf, A.R., Mills, S.J., Rumsey, M.S., Spratt, J. and Favreau, G. (2012) The crystal structure determination and redefinition of matulaite, $\mathrm{Fe} 3+\mathrm{Al} 7(\mathrm{PO} 4) 4(\mathrm{PO} 3 \mathrm{OH}) 2(\mathrm{OH}) 8(\mathrm{H} 2 \mathrm{O}) 8 \cdot 8 \mathrm{H} 2 \mathrm{O}$. Mineralogical Magazine, 76(3), 517-534. Moore, P.B. \& Ito, J. (1978): Kidwellite, NaFe3+9(OH)10(PO4)6*5H2O, a new species. Mineralogical Magazine,42, 137-140. American Mineralogist (1979): 64: 242-243. Braithwaite, R.S.W. and Corke, H. (1980) Kidwellite from Cornwall. Mineralogical Magazine, 43, 952-953. Kolitsch, U. (2004): The crystal structures kidwellite and 'laubmannite', two complex fibrous iron phosphates. Mineralogical Magazine, 68, 147-165.
MDJDA	MATULAITE $\quad \mathrm{Fe}^{3+} \mathrm{Al}_{7}\left(\mathrm{PO}_{4}\right)_{4}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{2}(\mathrm{OH})_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} .8 \mathrm{H}_{2} \mathrm{O}$
MDJDB	KIDWELLITE $\quad \mathrm{Na}\left(\mathrm{Fe}^{3+}, \mathrm{Mn}\right)_{9_{+x}(\mathrm{OH})_{11}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{PO}_{4}\right)_{6} \mathrm{mon} / \mathrm{P} 2 / \mathrm{b}}$

SERIES E RICHELSDORFITE, mon/C2/m. Structure consists of (001) layers formed by corner-sharing Cu and Ca polyhedra and As tetrahedra alternating with layers containing $\mathrm{Sb}(\mathrm{OH})_{6}$ octahedra and water molecules.

SERIES F	BLEASDALEITE, orth/ Structure not known. B. Birch, A. Pring and U. Kolitsch (1999): Bleasdaleite, ($\mathrm{Ca}, \mathrm{Fe} 3+$)2Cu5 $(\mathrm{Bi}, \mathrm{Cu})(\mathrm{PO} 4) 4 \neg(\mathrm{H} 2 \mathrm{O}, \mathrm{OH}, \mathrm{Cl}) 13$, a new mineral from Lake Boga, Victoria, Australia. Australian Journal of Mineralogy 5, 69-75. Structure unsolved; probably related to richelsdorfite.
MDJFA	BLEASDALEITE ($\mathrm{Ca}, \mathrm{Fe})_{2} \mathrm{Cu}_{5}(\mathrm{Bi}, \mathrm{Ce})\left(\mathrm{PO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}, \mathrm{Cl}\right)_{13}$
SERIES G	KRASNOVITE, orth/Pnna or Pnnn. Structure not known. Britvin, S. N., Pakhomovskii, Ya. A. and Bogdanova, A. N. (1996): Krasnovite, $\mathrm{Ba}(\mathrm{Al}, \mathrm{Mg})(\mathrm{PO} 4, \mathrm{CO} 3)(\mathrm{OH}) 2 \cdot \mathrm{H} 2 \mathrm{O}$ - a new mineral. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva: 125: 110-112.Mineralogical Record: 28: 221-222.
MDJGA	KRASNOVITE $\quad \mathrm{Ba}(\mathrm{Al}, \mathrm{Mg})\left(\mathrm{PO}_{4}, \mathrm{CO}_{3}\right)(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

TYPE K Structures with Large and Medium-sized Cations, (OH , etc.): $\mathrm{RO}_{4}>1: 1$ and

SERIES A FOGGITE, orth/A2 ${ }_{1} 22$. The structure is related to that of the pyroxenes and consists of $\mathrm{Al}(\mathrm{OH})_{2}(\mathrm{Op})_{2}$ octahedral edge-sharing zig-zag chain which runs parallel to the caxis. Its tetrahedral envelope and closely associated $\mathrm{Ca}(1) \mathrm{O}_{8}$ polyhedron lead to a sheet oriented parallel to $\{010\}$ which possesses the composition $\left[\mathrm{CaAl}_{2}(\mathrm{OH})_{4}\left(\mathrm{PO}_{4}\right)_{2}\right]^{2-}$. Equivalent sheets are weakly linked along [010] by $\mathrm{Ca}-\mathrm{O}$ polyhedra, the water molecules possessing a disordered character.

MDKAA
SERIES B WARDITE SERIES, tetr/P4 $\mathbf{1}_{1} \mathbf{2}_{1}$ or $\mathrm{P}_{3} \mathbf{2}_{1} 2$. Structure consists of corner-sharing M octahedra forming a sheet of interconnected 8-membered rings // (001); the sheets are linked by P tetrahedra and Na atoms.

MDKBA
MDKBB
MDKBC
MDKBD

WARDITE
CYRILOVITE
MILLISITE
FLUOROWARDITE

$$
\begin{aligned}
& \mathrm{NaAl}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NaFe}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \left({\mathrm{Na}, \mathrm{~K}) \mathrm{CaAl}_{6}(\mathrm{PO}}_{4}\right)_{4}(\mathrm{OH})_{9} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NaAl}_{3}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{~F}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}
\end{aligned}
$$

SERIES C MIXITE SERIES, hex/P6 $/ \mathrm{m}$. Structure consists of rutile-like chains // [0001] of edge-sharing Cu tetragonal pyramids which are linked into a framework by sharing edges and corners with Bi tricapped trigonal prisms and arsenate tetrahedra; the large cations and zeolitic water are accommondated in channels // [0001]. In argardite, edge-sharing Cu octahedra form rutile-like chains // [0001] that are linked by M polyhedra and arsenate tetrahedra to for a framework with [0001] channels that contain REE polyhedra and water molecules. The structure for agardite-(y) has been solved. It is characterized by infinite chains of edge-sharing CuO_{5} square pyramids extending down the \mathbf{c} axis, connected in the ab plane by edge-sharing YO_{9} polyhedra and corner-sharing AsO_{4} tetrahedra. HO groups occupy each corner of the CuO_{5} square pyramids not shared by a neighboring As or Y atom. Each YO_{9} polyhedron is surrounded by three tubular channels. The walls of the channels, // to the \mathbf{c} axis, are six-membered hexagonal rings comprised of CuO_{5} ans AsO_{4} polyhedra in a 2:1 ratio, and contain free molecules of lattice water.

Aksenov, S.M., Chukanov, N.V., Göttlicher, J., Möckel, S., Varlamov, D., Van, K.V., Rastsvetaeva, R.K. (2018): New insights into the crystal chemistry of agardite-(Ce): refinement of the crystal structure, hydrogen bonding, and epitaxial intergrowths with the Sb -analogue of auriacusite. Physics and Chemistry of Minerals 45, 39-50.
analysis, single-crystal X-ray analysis, XANES spectroscopy and IR spectroscopy. Hexagonal unitcell parameters are: $a=13.598(6), \mathrm{c}=5.954(3) \AA \dot{A} ; \mathrm{V}=953.5(2) \AA$ Å; space group P63/m. The structure has been solved and refined to final R1=3.87\%, wR $2=5.02$ for $786 \mathrm{I}>3 \sigma(\mathrm{I})$. Hydrogen atoms have been localized. The crystal-chemical formula is $(Z=2): A(1)(\mathrm{Ce} 0.82 \mathrm{Ca} 0.14 \mathrm{Sr0.04}) \Sigma 1.00$ A(2)(Ca0.03Ce0.02) $\mathbf{0} 0.05$ [Cu5.75(Fe3+, Mn)0.20] $\Sigma 5.95$ [T(1)(AsO4) $2.96 \mathrm{~T}(2)$ (SbO4)0.04)] $\Sigma 3.00$ (OH)5.9600.04.3H2O. Hydrogen bonding in agardite-series minerals has been characterized for the first time. IR spectra of agardite-(Ce) and agardite-(Nd) from Lavrion used for comparison, as well as structural data indicate the presence of isolated $\mathrm{H}+$ cations that do not form strong covalent bonds with coordinating \mathbf{O} atoms. Agardite-(Ce) from Clara Mine forms epitaxial growths with the Sbanalogue of auriacusite. The latter mineral was characterized by EDS analyses; its typical empirical formulae are $\mathrm{Ca} 0.06 \mathrm{Ce} 0.04 \mathrm{Fe} 3+1.06 \mathrm{Cu} 0.89[(\mathrm{SbO} 4) 0.58(\mathrm{AsO}) 0.38(\mathrm{SiO} 4) 0.04] \Sigma 1.00(\mathrm{O}, \mathrm{OH})$ and $\mathrm{Ca0.075Ce} 0.04 \mathrm{Fe} 3+0.93 \mathrm{Cu0.97}[(\mathrm{SbO4}) 0.59$ (AsO4)0.35(SiO4)0.06] $1.00(\mathrm{O}, \mathrm{OH})$. The formation of uniaxial growths of the Sb -analogue of auriacusite and agardite-(Ce) is caused by the close values of their c parameters (for auriacusite s.s. c = 5.9501(5) \AA). Three-valence state of iron and five-valence
of antimony in both minerals has been validated by means of Fe K-And Sb L 2,3-edge XANES spectroscopy.

MDKCA
MDKCB
MDKCC
MDKCD
MDKCE
MDKCF
MDKCG
MDKCH
MDKCI
MDKCJ
MDKCK
MDKCL
MDKCM

TYPE L

SERIES B TYROLITE, mon/P2 ${ }_{1}$ c. Structure based upon 2 nm-thick Cu arsenate layers with complex architecture; there are five $\mathrm{Cu}(\mathrm{II})$ sites. The layers are insulated by Ca^{2+} cations, $\left(\mathrm{CO}_{3}\right)_{2}$ groups and water molecules. The layers are held together by H groups. The structure consists of a thick heteropolyhedral sheet // to (001) which is built of distorted $\mathrm{Cu}\left(\mathrm{O}, \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)^{5-6}$ polyhedra and arsenate tetrahedral sharing edges and corners. The single sulfate tetrahedron is located in the interlayer space. The interlayer space also hosts four H-bonded water molecules.

MDLBA
MDLBB
TANGDANITE
MDLBC

AGARDITE-(La)
AGARDITE-(Y)
AGARDITE-(Nd)
AGARDITE-(Ce)
GOUDEYITE
MIXITE
PETERSITE-(Y)
ZALESIITE
JUANITAITE
CALCIOPETERSITE
PLUMBOAGARDITE
PETERSITE-(Ce)
PETERSITE-(La)

$$
\begin{aligned}
& (\mathrm{La}, \mathrm{Ce}) \mathrm{Cu}_{6}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Y}, \mathrm{Ce}) \mathrm{Cu}_{6}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Na}, \mathrm{Ce}) \mathrm{Cu}_{6}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Ce}, \mathrm{Nd}) \mathrm{Cu}_{6}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{AI}, \mathrm{Y}) \mathrm{Cu}_{6}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{BiCu}_{6}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{Y}, \mathrm{Ce}, \mathrm{Nd}_{4} \mathrm{Ca}\right) \mathrm{Cu}_{6}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaCu}_{6}\left[\left(\mathrm{AsO}_{4}\right)\left(\mathrm{AsO}_{3} \mathrm{OH}\right)(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right. \\
& \left(\mathrm{Cu}, \mathrm{Ca}, \mathrm{Fe}_{1}\right)_{10} \mathrm{Bi}^{(}\left(\mathrm{AsO}_{4}\right)_{4}(\mathrm{OH})_{11} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaCu}_{6}\left[\left(\mathrm{PO}_{4}\right)\left(\mathrm{PO}_{3} \mathrm{OH}\right)(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right. \\
& \left({\mathrm{Pb}, \mathrm{REE}, \mathrm{Ca}) \mathrm{Cu}_{6}\left(\mathrm{AsO}_{4}\right)_{3}(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}}_{\mathrm{CeCu}}^{6}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right. \\
& \mathrm{LaCu}_{6}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES D
WALLKILLDELLITE SERIES, hex/P6 $/ \mathbf{m m c}, \mathrm{P6}_{3} \mathbf{m c}$, or P62c. Structure pending. Kittatinnyite belongs here. American Mineralogist (1983): 68: 1029-1032.

$$
\begin{array}{ll}
\text { WALLKILLDELLITE- }(\mathrm{Mn}) & \mathrm{Ca}_{4} \mathrm{Mn}_{6}\left[\mathrm{AsO}_{4}\right]_{4}(\mathrm{OH})_{8} \cdot 18 \mathrm{H}_{2} \mathrm{O} \\
\text { WALLKILLDELLITE- }(\mathrm{Fe}) & \left(\mathrm{Ca}_{4} \mathrm{Cu}_{4}\right)_{4} \mathrm{Fe}_{6}\left[\mathrm{AsO}_{4}\right]_{4}(\mathrm{OH})_{8} \cdot 18 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

BOUAZZERITE, mon/ $\mathrm{P}_{2} / \mathrm{n}$. Structure based upon $\left[\mathrm{Bi}_{3} \mathrm{Fe}_{7} \mathrm{O}_{6}(\mathrm{OH})_{2}\left(\mathrm{AsO}_{4}\right) 9\right]^{11-}$ anionic nanoclusters that are built around trigonal prismatic Fe^{3+} and octahedral $\left.\mathrm{Fe}^{3+}{ }_{3}(\mathrm{OH}) \mathrm{O}_{12}\right)_{2}$ groups, containing one Fe ion in trigonal prismatic coordination and six Fe ions in octahedral coordination. The nanoclusters hava a diameter of about 1.3 nm and are linked together by chains of $\mathrm{Mg}\left(\mathrm{O}, \mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra. The resulting arrangement desplays channels down [100] that contain structural water.

BOUAZZERITE

$$
\mathrm{Bi}_{6}(\mathrm{Mg}, \mathrm{Co})_{11} \mathrm{Fe}_{14}\left[\mathrm{AsO}_{4}\right]_{18} \mathrm{O}_{12}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{86}
$$

Structures with Large and Medium-sized Cations, (OH , etc.): $\mathbf{R O}_{\mathbf{4}} \mathbf{>} \mathbf{2 : 1}$

SERIES A	MORINITE SERIES, mon, $\mathrm{P}_{1} / \mathrm{m}$. Structure consists of face- and edge-sharing Ca polyhedra forming zigzag chains // [010]; the chains are linked by $\mathrm{NaF}_{2} \mathrm{O}_{3}$ trigonal dipyramids and clusters consisting of two corner-sharing Al octahedra and two phosphate tetrahedra. In esperanzaite, two OH cornersharing AI octahedra each share two of their other corners with two bridging arsenate tetrahedra to form stable heteropolyhedral tetramers; the tetramers are stacked into columns // [001] that are linked by Na and Ca polyhedra.
MDLAA	ESPERANZAITE $\mathrm{NaCa}_{2} \mathrm{Al}_{2}\left(\mathrm{AsO}_{4}\right)_{2} \mathrm{~F}_{4}(\mathrm{OH}) \cdot 2 \mathrm{H}_{2} \mathrm{O}$
MDLAB	MORINITE $\quad \mathrm{NaCa}_{2} \mathrm{Al}_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~F}, \mathrm{OH})_{5} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
SERIES B	TYROLITE, mon/P2 ${ }_{1}$ c. Structure based upon 2 nm-thick Cu arsenate layers with complex architecture; there are five $\mathrm{Cu}(\mathrm{II})$ sites. The layers are insulated by Ca^{2+} cations, $\left(\mathrm{CO}_{3}\right)_{2}$ groups and water molecules. The layers are held together by H groups. The structure consists of a thick heteropolyhedral sheet // to (001) which is built of distorted $\mathrm{Cu}\left(\mathrm{O}, \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)^{5-6}$ polyhedra and arsenate tetrahedral sharing edges and corners. The single sulfate tetrahedron is located in the interlayer space. The interlayer space also hosts four H-bonded water molecules.
MDLBA	TYROLITE $\quad \mathrm{Ca}_{2} \mathrm{Cu}_{9}\left(\mathrm{AsO}_{4}\right)_{4}\left(\mathrm{CO}_{3}\right)(\mathrm{OH})_{8} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
MDLBB	TANGDANITE $\mathrm{Ca}_{2} \mathrm{Cu}_{9}\left(\mathrm{AsO}_{4}\right)_{4}\left(\mathrm{SO}_{4}\right)_{0.5}(\mathrm{OH})_{9} .9 \mathrm{H}_{2} \mathrm{O}$ mon/C2/c
MDLBC	LEOGANGITE $\mathrm{Cu}_{10}\left[(\mathrm{OH})_{6} / \mathrm{SO}_{4} /\left(\mathrm{AsO}_{4}\right)_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O}\right.$

MDLBD	Open	
MDLBE	UNNAMED	$\mathrm{Cu}_{10}\left(\mathrm{AsO}_{4}\right)_{4}\left(\mathrm{SO}_{4}\right)(\mathrm{OH})_{6} .8 \mathrm{H}_{2} \mathrm{O}$

SERIES C	DELVAUXITE-PHOSPHOVANADYLITE SERIES, iso, I43m. Structure co edge-sharing VO_{6} octahedra which are linked into a framework by P te framework are occupied by zeolitic cations and water molecules. Spe phosphovanadylite-Ca contains $\mathrm{V}^{4+}{ }_{4} \mathrm{O}_{16}$ polyvanadate clusters of four The polyvanadate clusters are linked into a three-dimensional zeolite-ty corners with PO_{4} tetrahedra. The open speace in the framework is dom equivalent of one large cation pfu sharing the OW 1 site.
MDLCA	DELVAUXITE

TYPE M Structures with Large Cations, (OH, etc.): $\mathrm{RO}_{4} \mathbf{>} \mathbf{2 : 1}$ and

SERIES C VYSOKYITE, tric/P1. The structure consists of UO_{8} square antiprisms sharing all of their vertices

SERIES

MDMAA

SERIES B

MDMBA
MDMBB

MDMCA

TYPE N

SERIES A

NATROPHOSPHATE, cub/Fd3́c. Structure consists of six $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{~F}$ octahedra sharing edges and converging at a common F vertex to form the cationic complex $\left[\mathrm{Na}_{6} \mathrm{~F}\left(\mathrm{H}_{2} \mathrm{O}\right)^{18}\right]^{5+}$. These complexes are linked into a framework by phosphate tetrahedra and a a tetrahedron at a site statistically occupied by a Na atom or water molecule.

NATROPHOSPHATE $\quad \mathrm{Na}_{7}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{~F} \cdot 19 \mathrm{H}_{2} \mathrm{O}$

LERMONTOVITE-VYACHESLAVITE SERIES, orth/Ccca. Structures not known. Melkov, V. G.; Belova, L. N.; Gorshkov, A. I.; Ivanova, O. A.; Sivtsov, A. V.; Boronikhin, V. A. (1983): New data on lermontovite. Mineralogicheskii Zhurnal: 5(1), 82-87. (in Russian.).

American Mineralogist (1958): 43: 379.
American Mineralogist (1984): 69: 214-215. Belova, L.N., Gorshkov, A.I., Ivanova, O.A., Sivtsov, A.V. \& Boronikhin, V.A. (1983): New natural uranium(IV) phosphate. Doklady Akademii Nauk SSSR: 3, 1460-1462. (in Russian).

Belova, L.N., Gorshkov, A.I., Ivanova, O.A., Sivtsov, A.V., Lizorkina, L.I. \& Voronikhan, V.A. (1984): Vyacheslavite $\mathrm{U} 4+(\mathrm{PO} 4)(\mathrm{OH}) . \mathrm{nH} 2 \mathrm{O}$ - a new uranium phosphate. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva: 113(3): 360-365. (in Russian).

American Mineralogist (1985): 70: 878.
LERMONTOVITE

$$
\begin{aligned}
& \mathrm{U}\left(\mathrm{PO}_{4}\right)(\mathrm{OH}) \cdot \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{U}\left(\mathrm{PO}_{4}\right)(\mathrm{OH}) \cdot 2.5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$ with 8 As-tetrahedra to form infinite chains // to [010]. These chains are linked by H bonds involving terminal (OH) groups of the double-protonated As-tetrahedra and molecules of water located between the chains.

VYSOKYITE
$\mathrm{U}^{4+}\left[\mathrm{AsO}_{2}(\mathrm{OH})_{2}\right]_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

Structures with Additional Anions + Phosphate, Arsenate or Vanadate.

GIRVASITE, mon/P2 $/ \mathbf{c}$. Structure consists of three Mg , two Ca , and one Na sites. The Mg atoms are octahedrally coordinated by O atoms and water molecules. The Ca sites are coordinated by eight anions each, whereas gthe Na site h as a coordination number equal to seven. The structure is based upon heteropolyhedral sheets formed by polymerization of Mg octahedra, phosphate tetrahedra, and carbonate groups. The sheets consist of fundamental building units formed by two Mg octahedral that share edges to form dimers decorated by three PO_{4} tetrahedra and linked to a unit consisting of a MgO_{6} octahedron sharing an edge with a carbonate triangle. The FBUs
polymerize to form chains running // to the a axis. The chains are further polymerized to compose heteropolyhedral sheets of H bonds. Girvasite is the most structurally complex mineral among natural phosphate carbonates know to date.
MDNAA GIRVASITE $\mathrm{NaCa}_{2} \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{3}\left(\mathrm{CO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$

SERIES B VOGGITE, mon/I2/m. The structure consists of layers of edge-sharing Zr-O pentagonal bipyramids, separated by layers of $\mathrm{Na}-\left(\mathrm{O}_{,} \mathrm{H}_{2} \mathrm{O}\right)$ octahedra. The carbonate ion acts as a bidentate ligand in the Zr O polyhedron. (with phosphates).

VOGGITE

$$
\mathrm{Na}_{2} \mathrm{Zr}\left(\mathrm{CO}_{3}\right)\left(\mathrm{PO}_{4}\right)(\mathrm{OH}) \cdot 2 \mathrm{H}_{2} \mathrm{O}
$$

SERIES C PEISLEYITE, mon/. No structure known. Mineralogical Magazine (1982): 46: 449-452.
American Mineralogist (1983): 68: 849-850.
Frost, R.L., S.J. Mills, and K.L. Erickson, (2004): Thermal decomposition of peisleyite: a thermogravimetry and hot stage Raman spectroscopic study. Thermochimica Acta, 419(1-2), 109-114.

Mills, S.J., Ma, C. and Birch, W.D. (2011) A contribution to understanding the complex nature of peisleyite. Mineralogical Magazine, 75, 2733-2737.

SERIES F BIRCHITE, orth/Pnma. The structure consists of alternating [$\left.\mathrm{CdO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ octahedra and [$\mathrm{CuO}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] square-pyramids that share edges to form chains that extend along the a axis, which ae linked by PO_{4} tetrahedra to form $\left[\mathrm{CdCu}\left(\mathrm{PO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{O}\right]$ sheets in the (010) plane. Two layers, which are related by mirror symmetry, are linked via $\left(\mathrm{SO}_{4}\right)$ tetrahedra vertices to form a heteropolyhedral framework structure. Interstitial channels withing the framework extend along both the a and caxes and are occupied by a single water molecule.

BIRCHITE

$$
\mathrm{Cd}_{2} \mathrm{Cu}_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right) \cdot 5 \mathrm{H}_{2} \mathrm{O}
$$

SERIES G JORGKELLERITE, trig/P3. The structure is built up of the layers composed of disordered edgesharing MnO_{6} octahedra. Each fourth Mn site is octahedral layer is vacant that results in appearance of ordered system of h exagonal "holes" occupies b y carbonate groups. The overall composition of the layer can be exparessas [$\mathrm{Mn}_{3} \mathrm{O}_{8}\left(\mathrm{CO}_{3}\right)$]. These manganese-carbonate layers are linked in the third dimension by phosphaste tetrahedra and Na -polyhedra.

MDNGA
JORGKELLERITE

$$
(\mathrm{Na}, \square)_{3} \mathrm{Mn}^{3+}{ }_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{CO}_{3}\right)(\mathrm{O}, \mathrm{OH})_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}
$$

SERIES H PEATITE SERIES, hex/P6m2 and orth//P222. The structues of peatite and ramkite have similar but not isostructural. They are dominated by M_{8} polyhedra. These are linked into six-membered, edgeor corner-sharing cluster, which in turn are joined together by PO_{4} tetrahedra. Both LiO_{6} octahedra and CO_{3} groups are positioned within the corner-sharing clusters. Linkages among all these polyhedral produce an open, equidimensional framework structure, with Na occupying the resulting
cavities. Both structures may be considered as complex derivatives of cation-deficient pervoskiterelated structures.

MDNHA	PEATITE-(Y)
MDNHB	RAMIKITE-(Y)

$$
\begin{aligned}
& \mathrm{Li}_{4} \mathrm{Na}_{12}\left(\mathrm{Y}, \mathrm{Ca}, \mathrm{REE}_{12}\left(\mathrm{PO}_{4}\right)_{12}\left(\mathrm{CO}_{3}\right)_{4}(\mathrm{~F}, \mathrm{OH})_{8}\right. \\
& \mathrm{Li}_{4}(\mathrm{Na}, \mathrm{Ca})_{12}(\mathrm{Y}, \mathrm{Ca}, \mathrm{REE})_{6} \mathrm{Zr}_{6}\left(\mathrm{PO}_{4}\right)_{12}\left(\mathrm{CO}_{3}\right)_{4} \mathrm{O}_{4}[(\mathrm{OH}), \mathrm{F}]_{4}
\end{aligned}
$$

SERIES I VANDERHEYDENITE, mon/P2 $/$ /n. Elliott, P. and Kolitsch, U. (2015) Vanderheydenite, IMA 2014-076. CNMNC Newsletter No. 23, February 2015, page 56; Mineralogical Magazine, 79, 51-58. The crystal structure of vanderheydenite ($\mathrm{R} 1=0.0497$ for 939 reflections with Fo $>4 \sigma \mathrm{~F}$) contains chains of edgesharing $\mathrm{ZnO6}$ octahedra parallel to a that are linked by edge- and corner-sharing $\mathrm{ZnO5}$ trigonal bipyramids and TO4 (T=P, As) tetrahedra forming zig-zag sheets parallel to \{010\}. Sheets are linked by half-occupied, distorted TO4 (T = P, S) tetrahedra in the [011] direction. Interstitial channels extend parallel to the a-direction and are occupied by strongly to weakly hydrogen-bonded H2O groups.

SERIES J JUANSILVAITE, mon/C2/c. In the structure of juansilvaite, $\mathrm{Al1O}_{6}$ and $\mathrm{Al2O}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)$ octahedra and ${\mathrm{As} 1 \mathrm{O}_{3}}^{2} \mathrm{As} 2 \mathrm{O}_{3}(\mathrm{OH})$ and $\mathrm{As} 3 \mathrm{O}_{2}(\mathrm{OH})_{2}$ tetrahedra share O vertices, yielding a layer // to $\{001\}$ in which octqahedra link only to tetrahedra, and not to other octahedra. Na 1 and Na 2 cations peripheral to the layers and Na 3 cations within cavities in the layer form bonds to the vertices of the octahedra and tetrahedra in the layers. Na 1 and Na 2 also form bonds to an SO_{4} tetrahedron in between the layers and both Na 1 and Na 3 bond to an otherwise isolated water group. The topology of the layer of alternating octahedra and tetrahedra also appears to be unique. Adjacent Al1 and Al2 octahedra are triple-linked to one another across adjacent faces by the three different As tetrahedra.

JUANSILVAITE

$$
\mathrm{Na}_{5} \mathrm{Al}_{3}\left[\mathrm{AsO}_{3}(\mathrm{OH})\right]_{4}\left[\mathrm{AsO}_{2}(\mathrm{OH})_{2}\right]_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}
$$

SERIES K VASILSEVERGINITE, mon/P2 ${ }_{1} / \mathbf{n}$.
MDNKA VASILSEVERGINITE $\mathrm{Cu}_{9} \mathrm{O}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)$

GROUP E STRUCTURES OF URANYL PHOSPHATES AND ARSENATES

TYPE A $\quad \mathrm{UO}_{2}: \mathrm{RO}_{4}=1: 2$
SERIES A WALPURGITE SERIES, tri/P1. Structure consists of edge-sharing BiO_{5} pentagonal pyramids and BiO_{4} tetragonal pyramids, with Bi at the apex, forming chains // [101] in walpurgite and // [010] in orthowalpurgite. The chains are linked into chains // (010) in walpurgite and (001) in orthowalpurgite by sharing corners of polyhedra. The sheets are linked by AsO_{4} tetrahedra, UO_{2+4} tetragonal dipyramids and water molecules. Structure consists of edge-sharing BiO_{5} pentagonal pyramids and BiO_{4} tetragonal pyramids, with Bi at the apex forming chains // [010] in walpurgite and // [010] in orthowalpurgite. The sheets are linked by asO${ }_{4}$ tetrahedra, UO_{2+4} tetragonal dipyramids and water molecules.

MEAAA
MEAAB
ORTHOWALPURGITE

MEAAC
WALPURGITE
PHOSPHOWALPURGITE

$$
\begin{aligned}
& \mathrm{Bi}_{4}\left(\mathrm{UO}_{2}\right)\left(\mathrm{AsO}_{4}\right)_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O} \text { tric/P1 } \\
& \mathrm{Bi}_{4}\left(\mathrm{UO}_{2}\right)\left(\mathrm{AsO}_{4}\right)_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \text { orth/Pbcm } \\
& \mathrm{Bi}_{4}\left(\mathrm{UO}_{2}\right)\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{4} 3 \mathrm{H}_{2} \mathrm{O} \text { tric/P1 }
\end{aligned}
$$

SERIES B PARSONSITE SERIES, tric/P1. Structure consists of dimmers ofedge-sharing UO ${ }_{7}$ pentagonal dipyramids which are connected into chains // [010] by edge- and corner-sharing phosphate tetrahedra; the chains are lined by Pb atoms.

MEABA	PARSONSITE	$\mathrm{Pb}_{2}\left(\mathrm{UO}_{2}\right)\left(\mathrm{PO}_{4}\right)_{2} 2 \mathrm{H}_{2} \mathrm{O}$
MEABB	HALLIMONDITE	$\mathrm{Pb}_{2}\left(\mathrm{UO}_{2}\right)\left(\mathrm{AsO}_{4}\right)_{2}$

SERIES C ULRICHITE, mon/P2/m. Structure consists of edge-sharing $\mathbf{C a}$ and UO_{2+5} polyhedra linked into sheets // (100) by P tetrahedra; the sheets are connected by CuO_{4} square planes and water molecules. The structure contains groups in which strongly elongated CuO_{6} octahedra (CuO_{4} squares) are corner-linked to two P tetrahedra via two opposite, equatorial O atoms. Edge- and

	corner-sharing $\mathrm{UO}_{7}, \mathrm{CaO}_{8}$ and PO_{4} polyhedra form heteropolyhedral she to adjacent sheets via the CuO_{6} octahedra and H bonds.	
MEACA	ULRICHITE	$\mathrm{CaCu}\left(\mathrm{UO}_{2}\right)\left(\mathrm{PO}_{4}\right) 24 \mathrm{H}_{2} \mathrm{O}$
SERIES D	LAKEBOGAITE, mon/Cc. Structure consists of pairs of edge-sharing U that are inter-linked via corner-sharing with PO_{4} tetrahedra, to form chai polyhedron also shares one of its edges with another P tetrahedron. Th cross-linked via corner-sharing between the P tetrahedra and $\mathrm{Fe}^{3+} \mathrm{O}_{4}(\mathrm{OH}$ join together by corner-sharing via OH anions to form chains // to b . Th water molecules occupy eight-sided channels along [010]. The remaini large ten-sided channels directed along [001] and intersecting the [010]	
MEADA	LAKEBOGAITE	$\mathrm{CaNaFe}_{2}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$
TYPE B	$\mathrm{UO}_{2}: \mathrm{RO}_{4}=1: 1$	
SERIES A	URANOSPATHITE-SABUGALITE SERIES, orth/Pnn2. Structure consists [($\left.\left.\mathrm{UO}_{2}\right)\left((\mathrm{As}, \mathrm{P}) \mathrm{O}_{4}\right)\right]$-constituted by corner-sharing UO_{6} octahedron located structure. Eight independent and isolated water molecules are also loc complex network of H -bonds links the water molecules together, to the uranyl-arsenate sheets. Fluorine was not accurately located by the cur supposed to replace some of the water molecules in the octahedron.	
MEBAA	ARSENURANOSPATHITE	$\left.\mathrm{AlI}\left(\mathrm{UO}_{2}\right)\left(\mathrm{AsO}_{4}\right)\right]_{2} \mathrm{~F}\left(\mathrm{H}_{2} \mathrm{O}\right)_{20}$
MEBAB	URANOSPATHITE	$\mathrm{Al}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{PO}_{4}\right]_{2} \mathrm{~F}\left(\mathrm{H}_{2} \mathrm{O}\right)_{20}\right.$
MEBAC	SABUGALITE	$\mathrm{H}_{0.5} \mathrm{Al}_{0.5}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot \mathrm{nH}_{2} \mathrm{O}$
SERIES B	AUTUNITE SERIES, tetr $/ 4 / \mathrm{mmm}$. The structure consists of UO_{2+4} tetrag corners with four R tetrahedra, forming continuous sheets in which UO and each RO_{4} is surrounded by $\mathbf{U O O}_{2}$ groups; these sheets alternate with and water molecules.	
MEBBA	AUTUNITE	$\mathrm{Ca}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot \mathrm{HH}_{2} \mathrm{O}$
MEBBB	FRITZSCHEITE	$\mathrm{Mn}\left(\mathrm{UO}_{2}\right)_{2}\left((\mathrm{P}, \mathrm{V}) \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \mathrm{nH}_{2} \mathrm{O}$
MEbBC	HEINRICHITE	$\mathrm{Ba}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEbBD	KAHLERITE	$\mathrm{Fe}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEbBE	NOVACEKITE-I	$\mathrm{Mg}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
MEBBF	SALEEITE	$\mathrm{Mg}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot \mathrm{HH}_{2} \mathrm{O}$
MEBBG	METASALEEITE	$\mathrm{Mg}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} 88 \mathrm{H}_{2} \mathrm{O}$
MEBBH	TORBERNITE	$\mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBBI	trögerite	$\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBBJ	URANOCIRCITE	$\mathrm{Ba}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBBK	URANOSPINITE	$\mathrm{Ca}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot \mathrm{HH}_{2} \mathrm{O}$
MEbBL	ZEUNERITE	$\mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBBM	XIANGJIANGITE	$(\mathrm{Fe}, \mathrm{Al})\left(\mathrm{UO}_{2}\right)_{4}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{OH}) \cdot 22 \mathrm{H}_{2} \mathrm{O}$
MEBBN	METARAUCHITE	$\mathrm{Ni}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2} .8 \mathrm{H}_{2} \mathrm{O}$
MEbBO	RAUCHITE	$\mathrm{Ni}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2} .10 \mathrm{H}_{2} \mathrm{O}$
MEBBP	NOVACEKITE-II	$\mathrm{Mg}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

SERIES C META-AUTUNITE SERIES, tetr/orth/P4/nmm. The structure of this group is based on a waffle-like $\left[\mathrm{UO}_{2} \mathrm{XO}_{4}\right]^{n-}$ - sheet. The position of the interlayer water molecules are based on an ideal arrangement in which four water molecules are H -bonded together to form squares which lie between the uranyl ions of successive layers. Each water molecule of a square
group is also H-bonded to a water molecule in an adjacent square and to an arsenate 0 atom, thus attaining a distorted tetrahedral coordination.

MEBCA	ABERNATHYITE	$\mathrm{K}_{2}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCB	BASSETITE	$\mathrm{Fe}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCC	CHERNIKOVITE	$\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCD	META-ANKOLEITE	$\mathrm{K}_{2}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCE	META-AUTUNITE	$\mathrm{Ca}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCF	METAHEINRICHITE	$\mathrm{Ba}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCG	METAKAHLERITE	$\mathrm{Fe}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCH	METAKIRCHHEIMERITE	$\mathrm{Co}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCI	META-LODEVITE	$\mathrm{Zn}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCJ	METANOVACEKITE	$\mathrm{Mg}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCK	METATORBERNITE	$\mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCL	METAURANOCIRCITE	$\mathrm{Ba}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{mon} / \mathrm{P}_{2}$
MEBCM	META-URANOSPINITE	$\mathrm{Ca}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCN	METAZEUNERITE	$\mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCO	NATROURANOSPINITE	$\left(\mathrm{Na}_{2}, \mathrm{Ca}\right)\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCP	URAMPHITE	$\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$
MEBCQ	LEHNERITE	$(\mathrm{Mn}, \mathrm{Fe})\left(\mathrm{UO}_{2} / \mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \mathrm{mon} / \mathrm{P}_{2} / \mathrm{n}$
MEBCR	open	
MEBCS	open	
MEBCT	METANATROAUTUNITE	$\mathrm{Na}_{2}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \cdot 6-8 \mathrm{H}_{2} \mathrm{O}$
MEBCU	PRZHEVALSKITE	$\mathrm{Pb}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
MEBCV	URAMARSITE	$\left(\mathrm{NH}_{4}, \mathrm{H}_{3} \mathrm{O}\right)_{2}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{AsO}_{4}, \mathrm{PO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

SERIES D THREADGOLDITE SERIES, mon/C2/m. Structure consist of corner-sharing UO ${ }_{6}$ tetragonal dipyramids and P tetrahedra forming sheets // (010) and (001); the sheets are lined by OH ions, water molecules and dimmers of edge-sharing AI octahedra.

MEBDA
MEBDB
MEBDC
MEBDD
MEBDE

SERIES E VOCHTENITE-COCONINOITE, mon/ Structures not known. DILL, H.G., MELCHER, F., GERDES, A and WEBER, B. (2008): The origin and zoning of hypogene and supergene $\mathrm{Fe}-\mathrm{Mn}-\mathrm{Mg}-\mathrm{Sc}-\mathrm{U}-\mathrm{REE}-\mathrm{Zn}$ phosphate mineralization from the newly discovered Trutzhofmühle aplite (Hagendorf pegmatite province, Germany). Canadian Mineralogist 46, 1131-1157. Young, E. J., Weeks, A. D. \& Meyrowitz, R. (1966): Coconinoite, a new mineral from Utah and Arizona. American Mineralogist 51, 651-663.

Belova, L. N.; Gorshkov, A. I.; Doinikova, O. A.; Mokhov, A. V.; Trubkin, N. V.; Sivtsov, A. V. (1993): New data on coconinoite. Doklady Akademii Nauk 329, 772-775. (In Russian.)

MEBEA VOCHTENITE $\quad(\mathrm{Fe}, \mathrm{Mg}) \mathrm{Fe}\left(\left(\mathrm{UO}_{2}\right)\left(\mathrm{PO}_{4}\right)\right)_{4}(\mathrm{OH}) \cdot 12-13 \mathrm{H}_{2} \mathrm{O}$
MEBEB

SERIES F HORAKITE, mon/C2/c. Horákite, ideally (Bi7O7OH)[(UO2)4(PO4)2(AsO4)2(OH)2]•3.5H2O, is a new uranyl mineral discovered on a specimen originating from Jáchymov, Czech Republic (most probably from the Geister vein, Rovnost mine). It occurs as a supergene alteration mineral in

MEBFA

TYPE C $\quad \mathrm{UO}_{2}: \mathrm{RO}_{4}=\mathbf{3 : 2}$
association with phosphuranylite (overgrowing older metatorbernite-metazeunerite) in a quartz gangue with abundant tennantite. Horákite forms greenish-yellow to pale yellow prismatic crystals clustering to acicular aggregates, up to 1 mm across. Crystals are transparent to translucent with a vitreous luster. The mineral has a light yellow streak. Estimated Mohs' hardness is ~2. The cleavage is perfect on $\{100\}$. The calculated density is $6.358 \mathrm{~g} / \mathrm{cm} 3$. Horákite is optically biaxial (+), $\alpha \approx 1.81, \beta$ $\approx 1.84, y \approx 1.88$ (measured in white light); 2 Vobs . is $78(1)^{\circ}, 2 \mathrm{~V}$ calc. is 83°; non-pleochroic. The optical orientation is $\mathbf{X}=\mathbf{b}, \mathbf{Z} \approx \mathrm{c}$. Electron-microprobe analysis yielded the empirical formula (Bi7.01Pb0.14)O7OH[(U1.01O2)4(P1.03O4)2(As0.74Si0.23O4)2(OH)2].3.5H2O based on 37.5 O apfu. Horákite is monoclinic, $\mathrm{C} 2 / \mathrm{c}, \mathrm{a}=21.374(2), \mathrm{b}=15.451(3), \mathrm{c}=12.168(2) \mathrm{A}, \beta=122.26(1)^{\circ}$ and $\mathrm{V}=$ 3398.1(10) A $3, Z=4$. The eight strongest X-ray powder-diffraction lines are [dobs $\dot{A}(\mathrm{l})(\mathrm{hkl})$]: 11.77(100)(110), 6.21(23)(-202), 5.55(23)(310, -112), 4.19(27)(-331), 3.54(61)(510, -423), 3.29(20)(331), $3.14(58)(241,023)$ and $3.02(98)(150,113,-533$, mult.). The crystal structure refinement of horákite, refined to $\mathbf{R = 5 . 9 5} \%$ for 1774 unique observed reflections, revealed a novel sheet structure. It consists of topologically unique [(UO2)4(PO4)2(AsO4)2(OH)2] sheets (i.e., horákite topology), and an interstitial \{(Bi7O7OH)(H2O)3.5\} complex. Sheets result from the polymerization of UO7 bipyramids by sharing edges to form tetrameric units; tetrahedrally coordinated sites are linked to the UO7 both monodentately (T1 to U1) and bidentately (T2 to U2). The mineral is named after František Horák (1882-1919), the mining engineer in Jáchymov, and his grandson, Vladimír Horák (born 1964), an amateur mineralogist and expert on the mining history of the Jáchymov ore district.

SERIES A

MECAA
MECAB
MECAC
MECAD
MECAE

SERIES

UPALITE-PHURALUMITE SERIES, mon/P2 ${ }_{1} /$ a. Structure consists of UO_{7} and UO_{8} polyhedra sharing edges with each other and faces with P tetrahedra to for $\left(\mathrm{UO}_{2}\right) \mathrm{O}(\mathrm{OH})\left(\mathrm{PO}_{4}\right)_{2}$ layers. These layers are linked by water molecules and cation polyhedra - $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}\right)_{6}$ octahedra.

UPALITE
FRANCOISITE-(Nd)
PHURALUMITE
MUNDITE
FRANCOISITE-(Ce)

$$
\begin{aligned}
& \mathrm{Al}\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}\left(\mathrm{OH} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right. \\
& (\mathrm{Nd}, \mathrm{Y}, \mathrm{Sm})\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}(\mathrm{OH}) \cdot 6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Al}_{2}\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{6} \cdot 10 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Al}_{2}\left(\mathrm{UO}_{2}\right)_{6}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{6} \cdot 11 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Ce}, \mathrm{Nd}, \mathrm{Ca})\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}(\mathrm{OH}) \cdot 6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

PHOSPHURANYLITE-PHURCALITE SERIES, orth/Bmmb. The structure of phurcalite (orth/Pbca) consists of $\left[\left(\mathrm{UO}_{2}\right)_{3} \mathrm{O}_{2}\left(\mathrm{PO}_{4}\right)_{2}\right]_{\mathrm{n}}{ }^{4 \mathrm{n}-}$ layers, parallel to (010), which are connected by Ca ions and $\mathrm{H}_{2} \mathrm{O}$. The coordination polyhedra are: for $\mathbf{U}(1)$ a hexagonal bipyramid, for $\mathbf{U}(2)$ and $U(3)$ pentagonal bipyramids, for $\mathrm{Ca}(4)$ and $\mathrm{Ca}(5)$ a capped trigonal prism and a triangulated dodecahedron, respectively, and for $P(6)$ and $P(7)$, tetrahedra. In the structures of hugelite/dumontite, the sheets of uranyl pentagonal and hexagonal bipyramids and arsenate tetrahedra are oriented // to (100) and the interlayer contains four symmetrically independent Pb atoms, each of which is coordinated by two oxygen atoms from the uranyl ions, two \mathbf{O} atoms from arsenate tetrahedra, and three symmetrically distinct water groups.

MECBA
MECBB
MECBC
MECBD
MECBE
MECBF
MECBG
MECBH
MECBI
MECBJ

DEWINDTITE
PHOSPHURANYLITE
ARSENURANYLITE
BERGENITE
YINGJIANGITE
PHURCALITE
CHISTYAKOVAITE
NIELSBOHRITE
DUMONTITE
HÜGELITE

$$
\begin{aligned}
& \mathrm{Pb}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{KCa}\left(\mathrm{H}_{3} \mathrm{O}\right)_{3}\left(\mathrm{UO}_{2}\right)_{7}\left(\mathrm{PO}_{4}\right)_{4} \mathrm{O}_{4} \cdot 8 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ca}\left(\mathrm{UO}_{2}\right)_{4}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O} \\
& (\mathrm{Ba}, \mathrm{Ca})_{2}\left(\mathrm{UO}_{2}\right)_{4}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{4} \cdot 5 \cdot 5 \mathrm{H}_{2} \mathrm{O} \mathrm{mon} / \mathrm{P}_{2} / \mathrm{c} \\
& \mathrm{~K}_{2} \mathrm{Ca}\left(\mathrm{UO}_{2}\right)_{7}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O} \mathrm{C} 222_{1} \\
& \mathrm{Ca}_{2}\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{O}_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Al}\left(\mathrm{UO}_{2}\right)\left[(\mathrm{OH})_{4} / \mathrm{Cl}_{8}\right] \cdot \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~K}\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{4} \cdot \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~Pb}_{2}\left(\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{PO}_{4}\right)(\mathrm{OH})_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~Pb}_{2}\left(\left(\mathrm{UO}_{2}\right)_{3}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})_{4}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

SERIES C Open

| SERIES D | VANMEERSSCHEITE SERIES, orth/Pmn2
 1 |
| :--- | :--- | :--- |
| atoms connecting the layers. | | Structure consists of a phosphura

SERIES E MOREAUITE-KAMITUGAITE SERIES, tric/P1 or P1. Structure based upon infinite sheets of uranyl and phosphate polyhedra, stacked perpendicular to c ; these sheets result from edge-sharing of UO_{7} and UO_{8} bipyramids, forming chains approximately // to b , which are linked by P tetrahedra. Such a sheet has not been observed in minerals or synthetic compounds and is related to the phosphuranylite topology. Thee are two distinct interlayer complexes in kamitugaite: one involving Pb^{2+} and water groups and another involving octahedrally coordinated Al and isolated water groups. Adjacent sheets are linked a) through the $\mathrm{Pb}-\mathrm{O}$ and H -bonds, and b) via H -bonds only in case of the interlayer with AI, the bonding differences being largely attributable to the veery different stereochemistry of Pb^{2+} compared to $\mathbf{A l}^{3+}$. American Mineralogist (1985): 70: 437.

Bulletin de la Société française de Minéralogie et de Cristallographie (1984): 107: 15-19. American Mineralogist (1985): 70: 1330-1331.

Bulletin de la Société française de Minéralogie et de Cristallographie (1985): 108: 9-13.
MECEA
KAMITUGAITE

```
PbAl(UO)
```

MECEB
MOREAUITE

$$
\mathrm{Al}\left(\mathrm{UO}_{2}\right)\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})_{2} \cdot 13 \mathrm{H}_{2} \mathrm{O}
$$

SERIES F ASSELBORNITE SERIES, cub/Im3m, I432, Im3, or I23. Structure not known. Sarp, H., J. Bertrand \& J. Deferne (1983): Asselbornite, (Pb, Ba) $(\mathrm{UO} 2) 6(\mathrm{BiO}) 4[(\mathrm{As}, \mathrm{P}) \mathrm{O} 4] 2(\mathrm{OH}) 12$ * 3 H 2 O , a new uranium, bismuth, lead and barium hydrous arsenate: Neues Jahrbuch für Mineralogie, Monatshefte: 417-423.

American Mineralogist (1984): 69: 565.
Sejkora, Jiří; Čejka, Jiří (2007), Šreinite from Horní Halže, the Krušné hory Mountains, Czech Republic, a new mineral species, its comparison with asselbornite from Schneeberg, and new data for asselbornite. Neues Jahrbuch für Mineralogie - Abhandlungen, Volume 184(2)197-206.

MECFA
ASSELBORNITE

$$
\mathrm{Pb}\left(\mathrm{UO}_{2}\right)_{4}(\mathrm{BiO})_{3}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})_{7} \cdot 4 \mathrm{H}_{2} \mathrm{O}
$$

MECFB

TYPE D $\quad \mathrm{UO}_{2}: \mathrm{RO}_{4}=\mathbf{2 : 3}$
SERIES A URANOPHANE SERIES, tric/P1. The structure of furongite contains infinite uranyl phosphate sheets of composition $\left[\left(\mathrm{UO}_{2}\right)_{4}\left(\mathrm{PO}_{4}\right)_{6}\right]^{10-}$ which are // to (101). The sheets are constituted by UrO 5 pentagonal bipyramids and P tetrahedra which share edges and vertices, and adjacent sheets are linked by a dense network of H bonds. Running through the sheets and connected mainly to the free apical O atom of the P tetrahedra are Al octahedra connected together to form remarkable $\mathrm{Al}_{2} \mathrm{O}_{5}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ and $\mathrm{Al}_{4} \mathrm{O}_{8}(\mathrm{OH})_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$ clusters. These Al clusters are only bonded to one sheet, and do not connect two adjacent sheets together. The topology of the uranyl phosphate sheets is related to the uranophane anion topology, and can be described as a new geometrical isomer of the uranophane group.

MEDAA FURONGITE

$$
\mathrm{Al}_{4}\left[\left(\mathrm{UO}_{2}\right)_{4}\left(\mathrm{PO}_{4}\right)_{6}\right](\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{19.5}
$$

GROUP F POLYPHOSPHATES, POLYARSENATES, POLYVANADATES

TYPE A Diphosphates, Divanadates, and Diarsenates.

SERIES A BLOSSITE SERIES, orth/Fdd2. In blossite, corner-sharing V tetrahedra form $\mathrm{V}_{2} \mathrm{O}_{7}$ dimers lying in the (100) plane; these dimers are linked along [001] by sharing corners of CuO_{3+2} trigonal dipyramids;
the dipyramids share edges to form zigzag chains // [011] and [013]. In ziesite, the dimmers are joined by corner-sharing square-based CuO_{4+1} pyramids. Thortveitite group belongs here.

MFAAA	ZIESITE	$\mathrm{Cu}_{2}\left[\mathrm{~V}_{2} \mathrm{O}_{7}\right]$	mon/A2/a
MFAAB	BLOSSITE	$\mathrm{Cu}_{2}\left[\mathrm{~V}_{2} \mathrm{O}_{7}\right]$	orth/Fdd2
SERIES B	CHERVETITE, mon/P2 ${ }_{1} / \mathrm{a}$. Structure consists of corner-sharing V tetrahedra forming $\mathrm{V}_{2} \mathrm{O}_{7}$ dimers that are linked into a framework by sharing edges and corners with PbO_{8-9} polyhedra.		
MFABA	CHERVETITE	$\mathrm{Pb}_{2}\left[\mathrm{~V}_{2} \mathrm{O}_{7}\right]$	
SERIES C	KAINOTROPITE, orth		
MFACA	KAINOTROPITE	$\mathrm{Cu}_{4} \mathrm{Fe}^{3+} \mathrm{O}_{2}$	
SERIES D	FIANELITE, mon/P2 ${ }_{1} / n$. Structure consists of edge-sharing $\mathrm{MnO}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)$ octahedra forming zigzag chains // [101] which are cross-linked into a framework by sharing corners of V dimmers and by Hbonding.		
MFADA	FIANELITE	$\mathrm{Mn}^{2+}{ }_{2} \mathrm{~V}^{5+}$	
MFADB	MESAITE	$\mathrm{CaMn}^{2+}{ }_{5}(\mathrm{~V}$	
MFADC	RUDLINGERITE	$\mathrm{Mn}^{2+} \mathrm{V}^{5+}$ As	
SERIES E	CANAPHITE, mon/Pa. . Structure consists of chains // [001] of alternating Ca octahedra and P dimers which are linked by Na atoms and water molecules.		
MFAEA	CANAPHITE	$\mathrm{CaNa}_{2} \mathrm{P}_{2} \mathrm{O}$	
SERIES F	PINTADOITE. Structure not known.		
MFAFA	PINTADOITE (Q/D)	$\mathrm{Ca}_{2}\left[\mathrm{~V}_{2} \mathrm{O}_{7}\right]$	
SERIES G	PETEWILLIAMSITE, mon/C2. The structure contains 15 symmetrically distinct As cations, each of which is tetahedrally coordinated by four O atoms, and pairs of these As tetrahedra share a vertex which results in an As dimer group which are in layers // to (010). The structure also has 16 distinct transition-metal M sites of which there are one tetrahedral, four square bipyramidal, and 11 octahedral arrangements. Adjacent pyroarsenate groups are linked th rough bonds to \mathbf{M} cations.		
MFAGA	PEETWILLIAMSITE	$(\mathrm{Ni}, \mathrm{Co})_{30}(\mathrm{~A}$	
SERIES H	WOOLDRIDGEITE, orth/Fdd2. Structure consists of distorted $\mathrm{CuO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedra sharing opposite corners to form linear chains decorated by $\mathrm{P}_{2} \mathrm{O}_{7}$ groups; the chains are in parallel arrangement in layers // (010), with the chains mutually orthogonal in alternating layers. The chains are linked by Ca and Na octahedra and by H bonding.		
MFAHA	WOOLDRIDGEITE	$\mathrm{Na}_{2} \mathrm{CaCu}$	
SERIES I	VOLBORTHITE, mon/C2/m. Structure consists of chains of edge-sharing Cu octahedra along [010], [1110] and [110] forming (001) sheets. The sheets are linked by the divanadate groups and Hbonding. The structure of engelhauptite is based upon the $\left[\mathrm{Cu}^{2+} 3\left(\mathrm{~V}_{2} \mathrm{O}_{7}\right)(\mathrm{OH})_{2}\right]^{0}$ frameworak formed y the linkage of deficient brucite-like layers of Jahn-Teller distorted $\mathrm{Cu}(\mathrm{O}, \mathrm{OH})_{6}$ octahedra via $\mathrm{V}_{2} \mathrm{O}_{7}$ groups. The framework contqains large channels occupied by K cations and Cl anions. And can be considered as its analog resulting from the replacement of water molecules by the equal amounts of K and Cl ions.		
MFAIA	VOLBORTHITE	$\mathrm{Cu}_{3}\left[\mathrm{~V}_{2} \mathrm{O}_{7}\right]$	
MFAIB	MARTYITE	$\mathrm{Zn}_{3}\left[\mathrm{~V}_{2} \mathrm{O}_{7}\right]$	
MFAIC	KARPENKOITE	$\mathrm{Co}_{3}\left[\mathrm{~V}_{2} \mathrm{O}_{7}\right]$	
MFAID	ENGELHAUPTITE	$\mathrm{KCu}_{3}\left(\mathrm{~V}_{2} \mathrm{O}\right.$	

SERIES J THEOPARACELSITE SERIES. Sarp, H. and Cerny R., 2001, Theoparacelsite, Cu3(OH)2As2O7, a new mineral: its description and crystal structure: Arkives de Science Genève: 54(1): 7-14.

American Mineralogist (2002): 87: 356-357.

Updated 5/20/19

[^0]: Abstract:
 Schmidite, $\mathrm{Zn}(\mathrm{Fe} 3+0.5 \mathrm{Mn} 2+0.5) 2 \mathrm{ZnFe} 3+(\mathrm{PO} 4) 3(\mathrm{OH}) 3(\mathrm{H} 2 \mathrm{O}) 8$ and wildenauerite, $\mathrm{Zn}(\mathrm{Fe} 3+0.5 \mathrm{Mn} 2+0.5) 2 \mathrm{Mn} 2+\mathrm{Fe} 3+(\mathrm{PO} 4) 3(\mathrm{OH}) 3(\mathrm{H} 2 \mathrm{O}) 8$ are two new oxidized schoonerite-group minerals from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Schmidite occurs as radiating sprays of orange brown to copper red laths on and near to altered phosphophyllite in a corroded triphylite nodule, whereas wildenauerite forms dense compacts of red laths, terminating
 2 V (meas) $=81.4(8)^{\circ}$ for schmidite, and with $\alpha=1.659(3), \beta=1.687(3), \gamma=1.742(3), 2 \mathrm{~V}($ meas $)=73(1)$ for wildenauerite. Electron microprobe analyses, with H 2 O from thermal analysis and $\mathrm{FeO} / \mathrm{Fe} 2 \mathrm{O} 3$ from Mössbauer spectroscopy, gave FeO 0.4, MgO 0.3, Fe2O3 23.5, MnO 9.0, ZnO 15.5, P2O5 27.6, H2O 23.3, total 99.6 wt\% for schmidite, and FeO 0.7, MgO 0.3, Fe2O3 25.2, MnO 10.7, ZnO 11.5, P2O5 27.2, H2O 24.5, total $100.1 \mathrm{wt} \%$ for wildenauerite. The empirical formulae, scaled to 3 P and with OH adjusted for charge balance are $\mathrm{Zn} 1.47 \mathrm{Mn} 2+0.98 \mathrm{Mg} 0.05 \mathrm{Fe} 2+0.04 \mathrm{Fe} 3+2.27(\mathrm{PO} 4) 3(\mathrm{OH}) 2.89(\mathrm{H} 2 \mathrm{O}) 8.54$ for schmidite and Zn1.11Mn2+1.18Mg0.05Fe2+0.08Fe3+2.47(PO4)3(OH)3.25(H2O)9.03 for wildenauerite. The two minerals have orthorhombic symmetry, Pmab, $Z=4$. The unit-cell parameters from refinement of powder XRD data are $a=11.059(1), b=25.452(1)$ and $c=6.427(1) \AA ̊$ for schmidite,

