HALIDES

CLASS G H	łA	۱L	.ID	ES
-----------	----	----	-----	----

GROUP A COORDINATION STRUCTURES

TYPE A ANHYDROUS HALIDES

SERIES A HALITE SERIES, cubic/Fm3m. The structure is formed by the closest packing of Cl⁻ anions in cubic closest packing with Na⁺ cations occupying all the octahedral interstices.

GAAAA	HALITE	NaCl
GAAAB	SYLVITE	KCI
GAAAC	VILLIAUMITE	NaF
GAAAD	CAROBBIITE	KF
GAAAE	SALAMMONIAC	NH ₄ CI
GAAAF	CHLORARGYRITE	AgCl
GAAAG	BROMARGYRITE	AgBr
GAAAH	GRICEITE	LiF
GAAAI	LAFOSSAITE	TI(CI,Br)

SERIES B SPHALERITE Structure type, cubic/F<u>4</u>3m.

GAABA	NANTOKITE	CuCl
GAABB	MIERSITE	(Ag,Cu)I
GAABC	MARSHITE	Cul

SERIES C WURTZITE Structure type, hex/P6₃mc.

GAACA IODARGYRITE AgI

SERIES D FLUORITE SERIES, cub/Fm3m. The structure is based on a simple cubic packing of the F atoms, with Ca occupying 1/2 of the cubic voids forming a square pattern.

GAADA	FLUORITE	CaF ₂
~		D F

_. . . . _ . . _ _

_ . . _ .

GAADB	FRANKDICKSONITE	Ba⊦₂

GAADC HALENIUSITE-(La) (La,Ce)OF

GAADD STRONTIOFLUORITE SrF2

GAADE FLUOROCRONITE PbF2

SERIES E COTUNNITE, orth/Pmnb. Cotunnite group. In cotunnite, Pb polyhedra share CI-CI edges to form chains // [001] that are linked into sheets // (010); Pb-CI bonding between sheets. There is a structural, morphological and physical relationship to laurionite in the orientation Pcmn. In barstowite, cotunnite-type sheets alternate with Pb (CO₃).H₂O sheets along [100]. The structure of barstowite can be described in terms of three layers stacked along [001] in the sequence ...CACBCACBC... to give a 16.7 S repeat. Layer A consists of face-sharing PbCl₆ distorted square antiprisms. Layer B is composed of Pb coordinated to 5 CI and 2 O each with two H to form water groups. Layer C is formed by Pb coordinated to 5 CI and 3 O which are from carbonate groups. The H positions are deduced and are H–bonded to O from the carbonates.

GAAEA	COTUNNITE	PbCl ₂
GAAEB	BARSTOWITE	PbCO3 3PbCl2 H2O
GAAEC	PSEUDOCOTUNNITE	K ₂ PbCl ₄
GAAED	COCCINITE (?)(G)	Hgl ₂

SERIES F GAGARINITE SERIES, trig/R3 or R3. The structure is a stuffed derivative of the UCl₃ arrangement. The Ca,REE atoms are coordinated in a tricapped trigonal prism. The cations bond to three F atoms in the mirror plane above and below 2.366 A, and also form bonds with three coplanar F atoms through the prism faces.

GAAFA	GAGARINITE-(Y)	NaCaY(F,Cl) ₆
GAAFB	GAGARINITE-(Ce)	NaCaCe(F,Cl) ₆

GAAFC POIEZHAEVAITE-(Ce) NaSrCeF₆

- SERIES G LAURELITE, hex/ P6, The structure is related to α PbF₂. Both are based upon nine-fold coordination Pb as tricapped trigonal prisms (TCTPs), which share edges and faces. The two structures can be described with respect to the face-sharing linkages of their TCTPs. The structure of alpha PbF₂ consists of corrugated sheets of face-sharing TCTPs that interlock by edge-sharing perpendicular to the c axis. In laurelite, the Pb(2) TCTPs form three-membered face-sharing clusters about the threefold axis that are propagated into trigonal cylinders by sharing faces in the direction of the c axis. The Pb(1) and Pb(3) TCTPs are linked by face-sharing into a three-dimensional framework with corresponding cylindrical voids. Asymmetric co-ordinations about Pb(1) and Pb(2) are attributed to the stereoactive lone-pair effect.
- GAAGA LAURELITE Pb₇F₁₂Cl₂

SERIES H CHALLACOLLOITE SERIES, mon/P21/c. Structure consists of... :

J. Schlüter, D. Pohl and S. Britvin (2005): The new mineral challacolloite, KPb2Cl5, the natural occurrence of a technically known laser material. N. Jb. Min. Abh. 182, 95-101.

Mitolo D., Pinto D., Garavelli A., Bindi L. & Vurro F. (2009): The role of the minor substitutions in the crystal structure of natural challacolloite, KPb2Cl5, and hephaistosite, TIPb2Cl5, from Vulcano (Aeolian Archipelago, Italy). Mineralogy and Petrology 96, 121-128. Campostrini, I., Demartin, F., Gramaccioli, C.M., Orlandi, P. (2008): Hephaistosite, TIPb2Cl5, a new thallium mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy. Canadian Mineralogist, 46, 701-708.

Mitolo D., Pinto D., Garavelli A., Bindi L. & Vurro F. (2009): The role of the minor substitutions in the crystal structure of natural challacolloite, KPb2Cl5, and hephaistosite, TIPb2Cl5, from Vulcano (Aeolian Archipelago, Italy). Mineralogy and Petrology 96, 121-128.

- GAAHA CHALLACOLLOITE KPb₂Cl₅
- GAAHB HEPHAISTOSITE TIPb₂Cl₅
- SERIES I FLINTEITE, orth/Pna21. The structure contains three Zn sites centering isolated tetrahedra ZnCl₄ tetrahedra and six independent K sites.
- GAAIA FLINTEITE K₂ZnCl₄
- SERIES J GRANDREEFITE, orth/I222, F222. The structure consists of layer fragments of the beta-PbF₂ structure parallel to (100) alternating with layers of isolated sulfate tetrahedra. The layer sequence in the unit cell is SO₄-PbF₂Pb-SO₄-PbF₂Pb-SO₄. Pb is coordinated to four F and four O forming a distorted bicapped trigonal prism. The structure is closely related to that of the lanthanide oxide sulfates, Ln₂O₂SO₄.

	GAAJA	GRANDREEFITE	$Pb_2(SO_4)F_2$
--	-------	--------------	-----------------

GAAJB PSEUDOGRANDREEFITE Pb₆(SO₄)F₁₀

GAAJC SUNDIUSITE Pb₁₀[Cl₂/O₈/SO₄]

- SERIES K PANICHIITE, cubic/Fm3m. Demartin, F., Campostrini, I. & Gramaccioli, C. M. (2009): Panichiite, natural ammonium hexachlorostannate(IV), (NH4)2SnCl6, from La Fossa crater, Vulcano, Aeolian Islands, Italy. Canadian Mineralogist 47, 367-372.
- GAAKA PANICHIITE (NH₄)₂SnCl₆

SERIES L	Covelli, N. (1823) Storia di fenom. Beudant, F.S. (1832), Trailé éléme	7. Structure not known. Has the perovskite structure. Monticelli, T. and Del Vesuvio avven. Negli anni, 1821, etc., Naples: 183. entaire de Minéralogie, second edition, 2 volumes: 2: 512. delle scienze fisische e matematiche, Naples, Rend., October 12, 1872).
	Scacchi (1873) Reale accademia	delle scienze fisische e matematiche, Naples, Mem.: Dec. 13, 1873.
	Lacroix (1907) Bulletin de la Socié	té française de Minéralogie: 30: 255.
	Zambonini, Ferruccio (1910) Mine	ralogia Vesuviana. 368 pp., Naples: 50.
	Renner (1912) Centralblatt für Min	eralogie, Geologie und Paleontologie, Stuttgart: 106 (as Baeumlerite).
	Zambonini, Ferruccio (1912) Mine	ralogia Vesuviana, appendix, 51 pp.: 3.
		ralogia Vesuviana, second edition with Quercigh, 463 pp., Naples: 99.
	Palache, Charles, Harry Berman 8	Clifford Frondel (1951), The System of Mineralogy of James Dwight Yale University 1837-1892, Seventh edition, Volume II: 91-92.
GAALA	CHLOROCALCITE	KCaCl₃
GAALB	JAVORIEITE	KFeCl₃
SERIES M		F., Campostrini, I., Castellano, C. and Gramaccioli, C.M. (2011): Argesite, r No. 11, December 2011, page 2892; Mineralogical Magazine, 75, 2887-
		ellano, C. and Gramaccioli, C.M. (2012): Argesite, (NH4)7Bi3Cl16, a new cano, Aeolian Islands, Italy: a first example of the [Bi2Cl10]4- anion. 451.
GAAMA	ARGESITE	(NH ₄) ₇ Bi ₃ Cl ₁₆
SERIES N	[Cu ²⁺ ₂ Cl ₆]. The KCl ₉ polyhedra a	${\rm Sl}_3$ structure. The structure contains almost planar, discrete dimers are connected via common faces to form interrupted layers. The each other by the common edges of the K-centered polyhedra.
	Willett, Roger D.; Dwiggins, Claud and NH4CuCl3. <i>Journal of Chemic</i>	ius, Jr.; Kruh, R. F.; Rundle, R. E. (1963): Crystal Structures of KCuCl3 cal Physics, 38 , 2429-2436
		ovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and uite, IMA 2013-002. CNMNC Newsletter No. 16, August 2013, page 2701; - 2709.
GAANA	SANGUITE	KCuCl ₃
SERIES O	open	
SERIES P	NATALIYAMALIKITE, orth/Cmcr	n.
GAAPA	NATALIYAMALIKITE	П
TYPE B	HYDROUS HALIDES	
SERIES A	BISCHOFITE, mon/C2/m. The st	ructure is based on distinct Mg(H₂O)₀Cl₂ groups formed by Mg(H₂O)₀

SERIES A BISCHOFITE, mon/C2/m. The structure is based on distinct $Mg(H_2O)_6CI_2$ groups formed by $Mg(H_2O)_6$ octahedra, with CI located at the octahedron faces above and below. Six CI atoms not in this group form a ring in a plane perpendicular to the axis of the molecule. Structure consists of $Mg(H_2O)_6$ octahedra connected into a framework by CI ions.

GABAA	BISCHOFITE	MgCl ₂ ⁻ 6H ₂ O
GABAB	ROKUHNITE	FeCl ₂ [·] 6H ₂ O

- SERIES B NICKELBISCHOFITE. Structure consists of Ni(H₂O)₄Cl₂ pseudo-octahedra which are linked by Hbonding to form sheets // (001); it is not structurally related to bischofite.
- GABBA NICKELBISCHOFITE NiCl₂·6H₂O
- SERIES C ANTARCTICITE, trig/P321. Structure consists of a framework of Ca(H₂O)₇ polyhedra linked by CI atoms.
- GABCA ANTARCTICITE CaCl₂[·]6H₂O
- SERIES D ERIOCHALCITE, orth/Pbmn. Structure consists of distorted CuCl₂(H₂O)₄ octahedra sharing CI-CI edges to form linear chains // [001]; the chains are linked by H-bonding from the water molecules.
- GABDA ERIOCHALCITE CuCl₂·2H₂O

SERIES E SINJARITE, tetr/. Structure not known. American Mineralogist (1980): 65: 1069.

Mineralogical Magazine: 43: 643-645.

- GABEA SINJARITE CaCl₂·2H₂O
- SERIES F CHLORALUMINITE, trig/R<u>3</u>c. Structure consists of a framework of insular Al(H₂O)₆ octahedra linked by Cl atoms.
- GABFA CHLORALUMINITE AICl₃⁻6H₂O
- SERIES G ATACAMITE SERIES. Four polymorphs; three with gibbsite-like sheets of edge-sharing Cu(OH)₄Cl₂ octahedra - atacamite with sheets // [110], clinoatacamite // (101), and paratacamite // (0001); the sheets are connected by single Cu octahedra, the fourth polymorph, botallackite, has brucite-like sheets // (001) of edge-sharing Cu(OH)₄Cl₂ octahedra, connected by H-bonding. Botallackite structure consists of sheets of edge-sharing Cu_{Φ_6} octahedra of composition $Cu_2(OH)_3CI$; these sheets are parallel to {100}, and are joined by H bonding between O and Cl anions, accounting for the perfect {100} cleavage and platy habit. The clinoatacamite structure consists of layers of partly occupied, edge-sharing octahedra of Jahn-Teller-distorted [Cu(OH)₄Cl₂] octahedra parallel to (101). This layer is topologically the same as that in mica. Adjacent layers of octahedra are offset, such that vacant sites in one sheet align with occupied sites in the neighboring sheet. Lavers are linked by individual, slightly Jahn-Teller distorted octahedra of composition [Cu(OH)6]. The structures of paratacamite and the other polymorphs of $Cu_2(OH)_3CI$, atacamite and botallakite, also are layered, but they differ from the layering of clinoatacamite in topology, composition and cross-linkage. The structure of kapellasite and its Mg analogue consists of sheets made from edge-sharing Cu(OH)₄Cl₂ and Zn(OH)₆ octahedra. The sheets are only weakly linked by O-H-Cl bridges, giving rise to perfect cleavage along (001) and to strong texture effects in powder diffraction data. Kuliginite can be regarded as the Fe-analog of tondiite. The crystal structure has atomic packing similar to spinel structure with vacant tetrahedral sites. See AM 103, 1435 for more detailed description.

F. C. Hawthorne, M. A. Cooper, J. D. Grice, A. C. Roberts & N. Hubbard (2002): Description and crystal structure of bobkingite, Cu2+5Cl2(OH)8(H2O)2, a new mineral from New Cliffe Hill Quarry, Stanton-under-Bardon, Leicestershire, UK. Mineralogical Magazine: 66, 301-311.

GABGA	ATACAMITE	Cu ₂ (OH) ₃ Cl	orth/Pmcn
GABGB	KEMPITE	Mn ₂ (OH) ₃ Cl	orth/Pnam
GABGC	PARATACAMITE	Cu ₂ (OH) ₃ Cl	trig/R3
GABGD	BOTALLACKITE	Cu ₂ (OH) ₃ Cl	mon/P21/m
GABGE	HIBBINGITE	γ-Fe ₂ (OH) ₃ Cl	orth/Pnam
GABGF	CLINOATACAMITE	Cu ₂ (OH) ₃ Cl	mon/P2 ₁ /n

GABGG	BELLOITE	Cu(OH)Cl	mon/P2 ₁ /a
GABGH	HERBERTSMITHITE	Cu ₃ Zn(OH) ₆ Cl ₂	trig/R <u>3</u> m
GABGI	KAPELLASITE	Cu ₃ Zn(OH) ₆ Cl ₂	trig/P <u>3</u> m1
GABGJ	AVDONINITE	K ₂ Cu ₅ [(OH) ₄ Cl ₈].H ₂ O	mon/P2/m, Pm, or P2
GABGK	HAYDEEITE	Cu ₃ MgCl ₂ (OH) ₆	Trig/P <u>3</u> m1
GABGL	GILLARDITE	Cu ₃ NiCl ₂ (OH) ₆	Trig/R3m
GABGM	KULIGINITE	Fe ₃ Mg(OH) ₆ Cl ₂	Trig/R <u>3</u>
GABGN	LEVERETTITE	Cu ₃ CoCl ₂ (OH) ₆	trig/R <u>3</u> m
GABGO	PARATACAMITE-(Mg)	Cu ₃ (Mg,Cu)Cl ₂ (OH) ₆	trig/R <u>3</u>
GABGP	PARATACAMITE-(Ni)	Cu ₃ (Ni,Cu)Cl ₂ (OH) ₆	trig/R <u>3</u>
GABGQ	TONDIITE	Cu ₃ MgCl ₂ (OH) ₆	trig/R <u>3</u>
GABGR	CENTENNIALITE	CaCu ₃ Cl ₂ (OH) ₆ .nH ₂ O	trig/P <u>3</u>
GABGS	IYOITE	MnCuCl(OH) ₃	mon/P21/m
GABGT	MISAKIITE	Cu ₃ Mn(OH) ₆ Cl ₂	trig/P <u>3</u> m1
GABGU	IYOITE	MnCuCl(OH) ₃	mon/P21/m
GABGV	MISAKIITE	Cu ₃ Mn(OH) ₆ Cl ₂	trig/P <u>3</u> m1
GABGW	BOBKINGITE	$Cu_5Cl_2(OH)_8(H_2O)_2$	mon/C2/m

SERIES H BOLEITE SERIES, cub & tet. The structure (cumengite) can best be described as a rod structure, with each rod centered on a 4-fold axis in the unit cell. The Pb(1)Cl₆ octahedron lies on the 4-fold axis at the origin of the unit cell, and is surrounded by a double-tiered necklace of edge-sharing Cu(1)(OH)₄Cl₂ octahedra embedded in the outside of the necklace and promoting linkage between the upper and lower tiers in the Cu(2)(OH)₄Cl square pyramid. This compact unit links upwards to another compact unit centered on the Pb(2)Cl₈ square antiprism. The lower section of this unit is the 4-membered ring of corner-sharing Pb(3)Cl₆(OH) augmented trigonal prisms. These rods form a body-centered array, and share polyhedral edges and corners to form a continuous 3-dimensional structure.

GABHA	BOLEITE	Pb ₂₆ Ag ₉ Cu ₂₄ (OH) ₄₈ Cl ₆₂	cub/Pm3m
GABHB	BIDEAUXITE	Pb ₂ Ag(F,OH) ₂ Cl ₃	cub/Fd3m
GABHC	CUMENGITE	Pb ₂₁ Cu ₂₀ (OH) ₄₀ Cl ₄₂	tetr/I4/mmm
GABHD	PSEUDOBOLEITE	Pb ₅ Cu ₄ (OH) ₈ Cl ₁₀ [·] 2H ₂ O	tetr/I4/mmm

SERIES I CARNALLITE, orth/Pbnn. The structure consists of a network of face-sharing KCl₆ octahedra linked to Mg(H₂O)₆ octahedra occupying the openings in the KCl network. The water molecules act as charge transmitters between Mg and Cl ions. Structure consists of dimers of face-sharing KCl₆ octahedra sharing corners with a monomeric KCl₆ octahedron to form a 3-dimensional framework. Large cavities in the framework accommodate Mg(H₂O)₆ octahedra which have a coordination of 12 with respect to Cl. Okrugin, V.M., Kudaeva, S.S., Karimova, O.V., Yakubovich, O.V., Belakovskiy, D.I., Chukanov, N.V., Zolotarev, A.A., Gurzhiy, V.V., Zinovieva, N.G., Shiryaev, A.A., Pavel M. Kartashov, P.M. (2019): The new mineral novograblenovite, (NH4,K)MgCl3-6H2O from the Tolbachik volcano, Kamchatka, Russia: mineral information and crystal structure. MIneralogical Magazine, 83, 223-231.

Abstract:

The new mineral novograblenovite, (NH4,K)MgCl3·6H2O, was found on basaltic lava from the 2012– 2013 Tolbachik fissure eruption at the Plosky Tolbachik volcano, Kamchatka Peninsula, Russia. It occurs as prismatic, needle-like transparent crystals together with gypsum and halite. Novograblenovite was formed due to the exposure of the host rocks to eruptive gas exhalations enriched in HCl and NH3. Basalt was the source of potassium and magnesium for the mineral formation. Novograblenovite crystallises in the monoclinic space group C2/c, with unit-cell parameters a = 9.2734(3) Å, b = 9.5176(3) Å, c = 13.2439(4) Å, β = 90.187(2)°, V = 1168.91(2) Å3 and Z = 4. The five strongest reflections in the powder X-ray diffraction pattern [dobs, Å (I, %) (h k I)] are: 3.330 (100) (2 2 0), 2.976 (45) (-114), 2.353 (29) (-224), 3.825 (26) (2 0 2), 1.997 (25) (-4-22). The density calculated from the empirical formula and the X-ray data is 1.504 g cm–3. The mineral is biaxial (+) with α = 1.469(2), β = 1.479(2) and γ = 1.496(2) (λ = 589 nm); 2Vmeas. = 80(10)° and 2Vcalc. = 75.7°. The crystal structure (solved and refined using single-crystal X-ray diffraction data, R1 = 0.0423) is based on the perovskite-like network of (NH4,K)Cl6-octahedra sharing chlorine vertices, and comprises [Mg(H2O)6]2+ groups in framework channels. The positions of all independent H atoms were obtained by difference-Fourier techniques and refined isotropically. All oxygen, nitrogen and chlorine atoms are involved in the system of hydrogen bonding, acting as donors or acceptors. The formula resulting from the structure refinement is [(NH4)0.7K0.3]MgCl3·6H2O. The mineral is named after Prokopiy Trifonovich Novograblenov, one of the researchers of Kamchatka Peninsula, a teacher, naturalist, geographer and geologist.

GABIACARNALLITEKMgCl₃·6H₂OGABIBNOVOGRABLENOVITE(NH₄,K)MgCl₃.6H₂O

- SERIES J TACHYHYDRITE, trig/R<u>3</u>c. Structure consists of insular CaCl₆ and two Mg(H₂O)₆ octahedra which are linked into a 3-dimensional framework by H-bonding.
- GABJA TACHYHYDRITE Mg₂CaCl₆·12H₂O

SERIES K MITSCHERLICHITE, tetr/P4₂/mnm. Structure consists of a framework of KCl₈ cubes and CuCl.

- GABKA MITSCHERLICHITE K₂CuCl₄·2H₂O
- SERIES L ZIRKLERITE, trig/. Structure not known. Kali, Halle (1928), 22, 157-161.

American Mineralogist (1928): 13: 592.

Palache, Charles, Harry Berman & Clifford Frondel (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Seventh edition, Volume II: 87.

GABLA ZIRKLERITE Q/D (Fe,Mg,Ca)₉Al₄Cl₁₈(OH)₁₂·14H₂O?

SERIES M FEODOSIYITE, mon/P2₁/c. The structure is based on layers of Cu²⁺ - centered polyhedra. Cu²⁺ cations ocupy six crystallographically non-equivalent sites that are placed in distorted octahedra and distorted tetragonal pyramids. Isolated almost regular Mg(H₂O)₆ octahedra, linked with the layers of Cu-centered polyhedra by H-bonds, occure in the interlayer space, as well as separate water molecules.

- GABMA FEODOSIYITE Cu₁₁Mg₂Cl₁₈(OH)₈.16H₂O
- SERIES N HYDROHALITE, mon/P2₁/c. Structure consists of edge-sharing NaCl₂(H₂O)₄ octahedra forming sheets // (100) similar to those in gibbsite. H-bonding between the sheets.
- GABNA HYDROHALITE NaCl. 2H₂O
- SERIES O GHIARAITE, tric/P<u>1</u>. The structure consists of the Ca ion to be coordinated by 3 Cl⁻ + 4H₂O, forming Ca₂Cl₄(H₂O)₈ molecular moieties that are held together by only weak H-bonds and van der Waals forces.
- GABOA GHIARAITE CaCl₂.4H₂O
- SERIES P CYROBOSTRYXITE, mon/P21/c. The structure contains isolated Zn-centered tetrahedra ZnCl₃(H₂O) connected via eight-coordianted K-centered polyhedra KCl₇ (H₂O) to form a pseudo-frazmework. Both Zn- and K-centered polyhedra involve only O(1) atoms of the H₂O(1) molecules, whereas H₂O(2) molecules are located in holes of the K-Zn-Cl-H₂O(1) polyhedra pseudo-framework. Pekov, I.V., Zubkova, N.V., Britvin, S.N., Yapaskurt, V.O., Chukanov, N.V., Lykova, I.S., Sidorov, E.G. and Pushcharovsky, D.Y. (2014) Cryobostryxite, IMA 2014-058. CNMNC Newsletter No. 22, October 2014, page 1247; *Mineralogical Magazine*, **78**, 1241-1248.
- GABPA CYROBOSTRYXITE KZnCl₃.2H₂O

SERIES Q CABVINITE, tetr/l4/m. Structure consists of Th tricapped trigonal prisms, connected through cornersharing, giving rise to a framework hosting [001] tunnels.

GABQA CABVINITE Th₂F₇(OH).3H₂O

GROUP B FRAMEWORK STRUCTURES

TYPE A ANHYDROUS HALIDES

SERIES A PEROVSKITE Structure type, orth/Pnma. The structure is based on a cubic closest packing of oxygen and calcium atoms with Ti atoms occupying 1/4 of the octahedral voids with a square pattern. The diaboleite structure may be described as a defect-perovskite arrangement of the form $Pb_2(Cu^{\bullet}) \varnothing_6$ in which half of the octahedra are not occupied by cations. The structure consists of a sheet of isolated Cu octahedra at the nodes of a 4₄ net. This arrangement is repeated in the [001] direction by the lattice translation to form corner-sharing [Cu²⁺ ϑ_5] chains parallel to [001].

SERIES B GANANITE, cub/P43m. Structure consists of atoms having eight nearest neighbors; the coordination spheres are BiF₈, FF₈ and F(Bi₄F₄).

- GBABA GANANITE BiF₃
- SERIES C TVEITITE, trig/R3 or R<u>3</u>. Structure based on that of fluorite, with the addition of five extra F atoms per formula unit, resulting in clusters of 13 cubic close-packed F ions; six YF₈₊₁ monocapped square prisms share on F atom to form Y₆F₁₃ clusters; the clusters are connected into columns // [0001] by CaF₁₂ polyhedra; the clusters are embedded in a fluorite-type structure. The defect new structure of the mineral manifests itself in a mixed occupation of all four independent cation positions and in a randomly disordered distribution of fluorine atoms over the majority of anion positions.

GBACA TVEITITE-(Y) (Y,Na)₆(Ca,LREE)₆(Ca,Na,HREE)₆(Ca,Na)F₄₂

SERIES D VASILYEVITE, tric/P<u>1</u>. The structure consists of strongly bonded [X-Hg-Hg-X] tetramers. These groups link together at their anion vertices to form a complex interpenetrating framework of two discrete three- and four-connecting nets. The halogen atoms and the carbonate and sulfur anions occur in the interstices of the two nets and serve to stabilize the nets via additional weak linkages to Hg atoms. The structure most resembles the structures of poyarkovite and eglestonite.

GBADA VASILYEVITE $(Hg_2)^{2+} {}_{10}O_6I_3Br_2CI(CO_3,S)$

- SERIES E open
- SERIES F OSKARSSONITE, rhom/R₃c. The structure can be described as a rhombohedral deformation of the idealized cubic perovskite-type octahedral framework of corner-sharing AIF₆ groups.

GBAFA OSKARSSONITE AIF₃

SERIES G WAIMIRITE, orth,Pnma. The mineral is isomorphous with synthetic SmF₃, HoF₃ and YbF₃. The Y atom forms a 9-coordinated YF₉ tricapped trigonal prism in the structure. Has the B-site vacant perovskite structure. Minuzzii, O.R.R., Ferroni, J.M.T.M., Bastos Netoi, A.C. & Pereira, V. P. (2003) : Primeira Notícia da Descoberta de Waimirita e Atroarita, Dois Novos Minerais na Mina de Pitinga, AM, Brasil. *Pesquisas em Geociências*, **30** (1): 99-101 http://www.ufrgs.br/igeo/pesquisas/3001/07-3001.pdf

Bastos Neto, A.C., Pereira, V.P., Atencio, D., Ferron, J.T.M.M. and Coutinho, J.M.V. (2014) Waimirite-(Y), IMA 2013-108. CNMNC Newsletter No. 19, February 2014, page 167; *Mineralogical Magazine*, **78**, 165-170.

Atencio D, C. Bastos Neto A, P. Pereira V, T.M.M. Ferron J, M.V. Coutinho J, B. Andrade M, Domanik K (2014): Waimirite-(Y), orthorhombic YF3 from Pitinga Mine, Presidente Figueiredo, Amazonas, Brazil. 21st General Meeting of the IMA (IMA2014), Gauteng, South Africa, September 1-5; Abstract Volume, 372.

GBAAANEIGHBORITENaMgF3GBAABDIABOLEITEPb2Cu(OH)4Cl2tetr/P4mm, defective perovskite structure

GBAGA WAIMIRITE-(Y) YF₃

TYPE B HYDROUS HALIDES

- SERIES A ABHURITE, trig/R32. Open sheets of Sn trigonal pyramids and dipyramids // (0001) are linked by sheets of Cl ions.
- GBBAA ABHURITE Sn₃O(OH)₂Cl₂
- SERIES B CADWALADERITE, cub?/ (amor) Structure not known. Gordon (1941) Academy of Natural Science of Philadelphia, Notulae Naturae, no. 80, April, 1941.

American Mineralogist (1942): 27: 144.

Palache, Charles, Harry Berman & Clifford Frondel (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Seventh edition, Volume II: 77.

- GBBBA CADWALADERITE Al₅(H₂O)₃(OH)₁₂.n(Cl,H₂O)
- SERIES C open
- SERIES D DIOSKOURIITE, mon/orth. 2m, 20
- GBBCA DIOSKOURIITE CaCu₄Cl₂(OH)₄.4H₂O
- SERIES E SIIDRAITE, orth/Fddd. The structure is based upon a cubane-like $Pb_4(OH)_4$ nucleus that is coordinated to sixteen iodide ions. Cu^+ ions are inserted into pairs of adjacent edge-sharing tetrahedral sites in the iodide motif to form $[Cu_2l_6]^{4-}$ groups. The structure is based upon a cubane-like $Pb_4(OH)_4$ nucleus that is coordinated to sixteen iodide ions. Cu^+ ions are inserted into pairs of adjacent edge-sharing tetrahedral sites in the iodide motif to form $[Cu_2l_6]^{4-}$ groups. The structure of siidraite is a framework comprising an alternation of two structural elements, a cubane-like $[Pb_4(OH)_4]^{4+}$ group and a $[Cu_2l_6]^{4-}$ dimer of edge-sharing Cul₄ tetrahedra with non-equivalent Cu. Six halocuprate groups surround each $[Pb_4(OH)_4]^{4+}$ nucleus, and each halocuprate group is shared between six adjacent $[Pb_4(OH)_4]^{4+}$ groups, five long Pb-I bonds are required to complete the coordination of each Pb atom. The resulting Pb(OH)_{3l_5} polyhedra are centered on a tetrahedron of O atoms to form a Pb_4(OH)_4]_{1_6} cluster.
- GBBEA SIIDRAITE Pb₂Cu(OH)₂I₃
- GROUP C RING STRUCTURES

GROUP D INSULAR STRUCTURES

TYPE A ANHYDROUS HALIDES

__ . . .

SERIES A BARITE Structure type, orth/Pnma. The structure consists of isolated BF₄ tetrahedra linked by M atoms with 12 coordination about the oxygen atoms. This arrangement results in a perfect (001) cleavage.

.....

GDAAA	AVOGADRITE	(K,Cs)BF ₄

GDAAB BARBERIITE NH₄BF₄

....

SERIES B FERRUCCITE (Anhydrite structure type), orth/Cmcm. Structure consists of Na in [4+4] coordination in a 12-faced polyhedron; chains // [100] are formed by edge-sharing of these polyhedra with BF₄ tetrahedra; the chains are connected into a 3-dimensional framework by edge- and corner-sharing with neighboring chains.

GDABA FERRUCCITE NaBF₄

SERIES C PEROVSKITE DERIVATIVE Structures, cub/Fm3m. The structure of hieratite is based on a mixed cubic closest packing of F and K atoms, with the Si atoms occupying 1/8 of the octahedral voids. It may also be imagined as a subtraction interstitial derivative of the perovskite structure.

GDACA	HIERATITE	K_2SiF_6
GDACB	CRYPTOHALITE	$(NH_4)_2SiF_6$
GDACC	DEMARTINITE	K ₂ [SiF ₆]

SERIES D RINNEITE, trig/R<u>3</u>c. In rinneite, face-sharing FeCl₆ and NaCl₆ octahedra alternate in chains // [0001], which are cross-linked by 3K. In chlormanganokalite, FeCl₆ is replaced by MnCl₆ and Na in the chains by K.

GDADA	RINNEITE	K ₃ NaFeCl ₆
GDADB	CHLORMANGANOKALITE	K ₂ MnCl ₆
GDADC	SALTONSEAITE	K₃NaMnCl ₆

SERIES E MALLADRITE, trig/P321. Structure consists of groups of three edge-sharing NaF₆ octahedra and one SiF₆ octahedron lie in the (0001) plane, and are linked into sheets // (0001) by F-F bonding; intersheet linkage is by van der Waals forces.

GDAEA	MALLADRITE	Na ₂ SiF ₆	
GDAEB	BARARITE	(NH ₄) ₂ SiF ₆	trig/R <u>3</u> m

SERIES F KNASIBFITE, orth/Imm2. The asymmetric structure unit contains two twelve-coordinated independent K ions, located on *m* and on *mm2* sites, respectively, two independent Na ions, of which one is nine-coordinated and the other one displays instead octahedral coordination. Three are also two crystallographically independent octahedral SiF₆²⁻ anions and a tetrahedral BF₄⁻ anion.

GDAFA KNASIBFITE K₃Na₄[SiF₆]₃[BF₄]

SERIES G STEROPESITE, mon/Cc. Demartin, F., et al., Canadian Mineralogist 47 (2009), in press

GDAGA STEROPESITE TI₃BiCl₆

SERIES H HEKLAITE, orth/Pnma. The structure corresponds to the synthetic compound KNaSiF₆. Garavelli, A., Balić-Žunić, T., Mitolo, D., Acquafredda, P., Leonardsen, E., Jakobson, S.P. (2010): Heklaite, KNaSiF6, a new fumarolic mineral from Hekla volcano, Iceland. Mineralogical Magazine, 74, 147-157.

GDAHA HEKLAITE KNaSiF₆

TYPE B HYDROUS HALIDES

SERIES A DOUGLASITE, mon/. Structure not known. Ochsenius (1877) Steinsalzlager, Halle: 94.

Precht, H. (1880): Ueber die Bildung des Wasserstoffs in den Stassfurter Precht Kalisalzbergwerken.- Berichte der Deutschen Chemischen Gesellschaft Berlin 13, 2326-2328.

Boeke (1909) Neues Jahrbuch für Mineralogie, Geologie und Paleontologie, Heidelberg, Stuttgart: II: 44.

Larsen, E.S. (1921) The Microscopic Determination of the Nonopaque Minerals, First edition, USGS Bulletin 679: 69.

Palache, Charles, Harry Berman & Clifford Frondel (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Seventh edition, Volume II: 100.

GDBAA DOUGLASITE K2FeCl42H2O

SERIES B ERYTHROSIDERITE SERIES, orth/Pnma. Structure consists of [Fe³⁺Cl₅H₂O]²⁻ octahedra that are connected by 2K⁺ to form a fluorite-like arrangement.

GDBBA	ERYTHROSIDERITE	K ₂ FeCl ₅ H ₂ O

GDBBB KREMERSITE (NH₄,K)₂FeCl₅[·]H₂O

GROUP E CHAIN STRUCTURES

TYPE A ANHYDROUS HALIDES

SERIES A CALOMEL SERIES, tetr/I4/mmm. Structure consists of linear CI-Hg-Hg-CI molecules // [001] that are linked into sheets // (001) of alternating CI and Hg atoms. The structure of moschelite consists of linear dimers I-Hg-Hg-I extending along the c axis with an Hg-Hg distance of 2.5903 A. The overall coordination sphere of the Hg atom is a considerably distorted octahedron.

GEAAA	CALOMEL	Hg_2CI_2
GEAAB	KUZMINITE	Hg ₂ (Br,Cl) ₂
GEAAC	MOSCHELITE	Hg_2I_2

SERIES B RUTILE Structure type, tetr/P4₂/mnm.

- GEABA SELLAITE MgF₂
- SERIES C EGLESTONITE, cub/la3d. The structure of eglestonite consists of four interpenetrating cubic nets of composition (Hg₂)₃O₂ in which O atoms form three O-Hg bonds and are connected by Hg-Hg dumbbells situated along each link of the net. The nets are held together by short O-H-O bonds and by Cl ions coordinated to six Hg atoms in the form of a distorted octahedron.

GEACA	EGLESTONITE	$(Hg_2)_3CI_3O_2H$
GEACB	KADYRELITE	$(Hg_2)_2O(Br,Cl)_2$

SERIES D TERLINGUAITE, mon/C2/c, C2/m, C2. The structure consists of a $Hg^{1+}_{3}O_{2}$ layers interleaved with Hg-O and Hg-CI layers. The dominating feature of this layer is the Hg^{1+}_{3} trimer, in which there is a bonding interaction between adjacent Hg cations. Within the plane, Hg trimers are arranged at the nodes of a 6₃ net, and intertrimer linkage is provided by O atoms. The difference between pinchite and terlinguaite lies in the structure of the Hg-O layers. In terlinguaite, zigzag –Hg-O-Hg-O- chains and CI-Hg-Hg-CI molecules, similar to calomel, form pseudo-layers // (<u>1</u>01). In kelyanite, the structure consists of Hg atoms that form six crystallographically independent pairs with Hg-Hg distances of 2.48 Å, the Hg and O atoms for O-Hg-Hg-O systems. Hg atoms in the pairs have additional coordination to O, CI, and Br atoms. Three independent Sb atoms are octahedrally coordinated by O atoms. The Hg dumbbells link the Sb octahedra in a 3D structure. The Sb³⁺O_n groups in the structure of kelyanite are not isolated as in other structures with trivalent Sb but participate in a more complex fragment (Hg₂)₆O₆Sb with six Hg-Hg-O-Sb bonds.

GEADA	TERLINGUAITE	$Hg^{1+}_{2}Hg^{2+}_{2}O_{2}Cl_{2}$
GEADB	POYARKOVITE	Hg₃OCI
GEADC	KELYANITE	$(Hg^{1-})_6(SbO_6)BrCl_2$ trig/P3

SERIES E MENDIPITE, orth/P2₁2₁2₁. In mendipite, Pb is at the apex of a Pb(O,Cl)₄ pyramid; the pyramids share edges to form double chains // [001]; the double chains are linked by sharing Cl atoms. Both structures are based on $[O_2Pb_3]$ double chains of edge-sharing OPb₄ ococentered tetrahedra that extend // to the a and b axis in damaraite and mendipite, respectively. In mendipite, the chains occur in two mutually perpendicular orientations, whereas, in damaraite, the chains occur in two orientations inclined to each other by ~ 50°. in mendipite, the chains ae linked th rough weak Pb-Cl bonds only, whereas in damaraite, the $[O_2Pb_3]$ chains are linked through OH(3) groups to form an [Pb₃O₂](OH) sheet that is // to (010). Additional OH(4) groups in damaraite are attached to the $[O_2Pb_3]$ double chains. The OH groups in damaraite form two short (OH)-Pb bonds that results in (OH)Pb₂ dimers.

GEAEA MENDIPITE

GEAEB DAMARAITE

Pb₃O₂(OH)Cl orth/Pmc2₁

- SERIES F open
- SERIES G PINCHITE, orth/lbam. The structure consists of layers of HgCl and Hg₃O₄ composition and is closely related to the structure of terlinguaite. There are three distinct Hg positions: Hg1 is coordinated by two O and four Cl atoms in a distorted octahedral arrangement; Hg2 is coordinated by four O and two Cl atoms in a bi-diminished, Siamese dodecahedral arrangement; Hg3 is coordinated by four O atoms in a distorted tetrahedral arrangement.
- GEAGA PINCHITE Hg₅O4Cl₂
- SERIES H BRONTESITE, ortho/Pnma. The structure contains one independent eight-coordinated Pb atom located on a .m. symmetry site; the coordination polyhedron is a bicapped trigonal prism with Pb-CI distances ranging from 2.777 to 3.724 Å. The Pb polyhedra are connected by shared edges to form chains running along [100]. There are also two independent sites occupied by the ammonium ions.
- GEAHA BRONTESITE (NH₄)₃PbCl₅
- SERIES I HANAWALTITE, orth/Pbma. The structure consists of undulatory [Hg-Hg]²⁺ ribbons which roughly parallel (100). The diatomic [Hg-Hg]²⁺ groups have anion tails which, in turn, serve as cross linkages between dimer ribbons through [Hg²⁺O₂Cl₂] planar rhombs.
- GEAIA HANAWALTITE $Hg_6^{1+}Hg^{2+}[CI,(OH)]_2O_3$
- SERIES J AURIVILLIUSITE, mon/ C2/c. Structure consists of infinite zigzag Hg²⁺-O-Hg²⁺ chains, running in the y direction, condensed by the Hg⁺-Hg⁺ groups to form folded layers which are further connected to form a three-dimensional structure by weak Hg²⁺-O bonds.
- GEAJA AURIVILLIUSITE [Hg⁺Hg²⁺OI]₂
- SERIES K YEOMANITE, orth/Pnma. The structure is based upon oxocentred OPb₄ tetrahedra, which jointly with OHPb₃ triangles, form [O(OH)Pb₂]⁺ chains similar to those observed in synthetic Pb₂O(OH). Yeomanite is structurally related to sidpietersite, penfieldite and laurionite. Turner, R.W., Siidra, O.I., Rumsey, M.S., Polekhovsky, Y.S., Krivovichev, S.V., Kretser, Y.L. and Stanley, C.J. (2013) Yeomanite, IMA 2013-024. CNMNC Newsletter No. 16, August 2013, page 2706; Mineralogical Magazine, 77, 2695-2709.
- GEAKA YEOMANITE Pb₂O(OH)CI
- SERIES L RUMSEYITE, tetr/l4/mmm. The crystal structure consists of alternating [OFPb₂] and CI layers. Rumseyite is related to other layered Pb oxyhalides. F and O are statistically disordered over one crystallographic site.
- GEALA RUMSEYITE [Pb₂OCIF]₂

TYPE B HYDROUS HALIDES

SERIES A CLARINGBULLITE, hex/P6₃/mmc. The structure contains two Cu positions. The Cu(1) position is octahedrally coordinated by four (OH) groups and two Cl atoms. The Cl(1) atoms are located in the apical position of a (4 + 2)-distorted octahedron, the distortion of which is attributed to the Jahn-Teller effect. The Cu(2) position is coordinated by six (OH) groups in a distorted trigonal prismatic arrangement. The Cu(1)Ø₆ octahedra share edges to form sheets of octahedra parallel to (001), with every fourth octahedral site vacant. These sheets of octahedra is such that the holes in the sheets are collinear, forming channels through the structure parallel to [001]. The Cl(2) position, which is partially occupied by (OH), is located in these channels, at a point midway between the sheets of octahedra. The Cu(2) position is located between the sheets, further linking the [Cu(1)₃•]Ø₈ sheets of octahedra into a framework. No structural description for barlowite.

GEBAA CLARINGBULLITE

Cu₄FCl(OH)₆

- GEBAB BARLOWITE Cu₄BrF(OH)₆
- SERIES B CONNELLITE SERIES, hex/P<u>6</u>2c. The structure consists of an intricate three-dimensional framework that contains large channels parallel to the c axis. The framework is composed of edge and corner-sharing polyhedra with Cu²⁺ as the central ion and apices composed of (OH), CI, and H₂O. The polyhedra are distorted. The channel contains the disordered SO₄ ion.

 GEBBA
 CONNELLITE
 Cu₁₉Cl₄(SO₄)(OH)₃₂·3H₂O

 GEBBB
 BUTTGENBACHITE
 Cu₃₆Cl_{6.5}(NO₃)_{1.5}(OH)₆₄·5.5H₂O

- SERIES C CHLOROXIPHITE, mon/P2₁/m. PbO₄Cl₄ antiprisms, as in diaboleite, PbO₅Cl₂ polyhedra, and Cu(OH)₄Cl₂ octahedra, as in diaboleite, but face-sharing to form zigzag chains along [010], build up sheets // (<u>1</u>01), which are connected via common Cl ions. New structure data gives a structure containing three symmetrically unique Pb sites and one Cu site. The Cu-site is coordinated by four (OH) groups to form an almost planar Cu(OH)₄ square t hat is complemented by two apical Cl anions, forming an elongated [Cu(OH)₄Cl₂] octahedron. The structure can be described in terms of oxocentred Opb₄ tetrahedra. The OPb₄ tetrahedra link together via common edges to form [O₂Pb₃]²⁺ double chains. The difference between chloroxiphite and other natural oxyhalides is the presence of Cu²⁺ cations which form an independent structural unit that links to units formed by OPb₄ tetrahedra. Chloroxiphite can be considered as a modular structure consisting of both strong and anioncentered units.
- GEBCA CHLOROXIPHITE Pb₃CuO₂(OH)₂Cl₂
- SERIES D YEDLINITE, trig/R<u>3</u>. The structure consists of a coordination framework centered around the Pb atoms. The main irregular polyhedron is formed by Pb coordinated by two X oxygen atoms, one Y oxygen atom, and five CI atoms. A sixth CI atom is not included in the coordinating group. Three symmetry-related lead polyhedra share faces, each face consisting of one CI, one X oxygen and one Y oxygen, to form a planar three membered "pinwheel" centered on a <u>3</u> axis. Each pinwheel shares six CI-CI edges with the centro-symmetrically related pinwheel above or below on the <u>3</u> axis. These double pinwheel groups are linked to form stacks parallel to c by octahedrally coordinated Cr atoms (the first case of octahedrally coordinated Cr³⁺ in an oxidized environment). Each lead polyhedron is tied to a symmetry-centered-related polyhedron of an adjacent 3 axis by sharing an approximately square face composed of four CI atoms. This face sharing, coupled with additional sharing of edges and apices, serves to unite adjacent stacks to form a three-dimensional bonding framework.
- GEBDA YEDLINITE Pb₆Cr³⁺(O,OH)₈Cl₆
- SERIES E CHRYSOTHALLITE, tetr/l4/mmm. The structure consists of the basic structural unit of a (001) layer of edge-sharing distorted CuCl₄(OH)₂ octahedra. Two Tl³⁺ cations occupy the center of isolated TICl₆ and TICl₄(H₂O)₂ octahedra connected to each other and to the Cu polyhedral layers vis KCl₆ and KCl₉ polyhedra. Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2013) Chrysothallite, IMA 2013-008. CNMNC Newsletter No. 16, August 2013, page 2702; *Mineralogical Magazine*, **77**, 2695-2709.
- GEBEA CHRYSOTHALLITE K₆Cu₆Tl₃Cl₁₇(OH)₄.H₂O
- SERIES F ZHARCHIKHITE, mon/P21/a. Structure not known. Bolokhontseva S.V., Baturin S.V., Ilmeyev E.S., Papova M.A., Purusova S.P. (1988) Zharchikhite AIF(OH)2 - a new mineral. Zapiski Vses.Mineral.Obshch., 117, 79-83. American Mineralogist (1989): 74, 504.
- GEBFA ZHARCHIKHITE AI(F,OH)₃

GROUP F LAYERED STRUCTURES

TYPE A ANHYDROUS HALIDES

SERIES A LAWRENCITE SERIES, trig/R<u>3</u>m. Structure consists of sheets of edge-sharing MCl₆ octahedra, as in brucite, but with 123-123 stacking.

GFAAA	LAWRENCITE	FeCl ₂
GFAAB	SCACCHITE	$MnCl_2$
GFAAC	CHLOROMAGNESITE (Q)	MgCl ₂

- SERIES B TOLBACHITE, mon/C2/m. The structure contains corrugated sheets of distorted Cu²⁺Cl₆ octahedra, with Van der Waals forces providing the intra-sheet bonding.
- GFABA TOLBACHITE CuCl₂
- SERIES C MOLYSITE, trig/R<u>3</u>. Structure consists of edge-sharing FeCl₃ octahedra forming sheets // (0001) of gibbsite-like interconnected 6-membered rings. The sheets are linked by van der Waals forces, and are stacked in the order ABCABC...
- GFACA MOLYSITE FeCl₃
- SERIES D FLUORCERITE SERIES, hex/P3c. Structure consists of sheets of F atoms alternating with sheets of REE and F atoms // (0001); the F atoms form 6-membered rings, similar to those in graphite; linear channels // [0001] accommodate additional F atoms.

GFADA	FLUORCERITE-(Ce)	(Ce,La)F₃
-------	------------------	-----------

- GFADB FLUORCERITE-(La) (La,Ce)F₃
- SERIES E MATLOCKITE SERIES, tetr/P4/nmm. The structure is based on an heterogeneous packing, where the packing atoms are not all alike but of two categories; CI (larger) and F. All form square layers (Q) which stack in the closest way. The Pb atoms are located between the two layers and are 9-coordinated.

GFAEA	MATLOCKITE	PbFCI
GFAEB	ZAVARITSKITE	BiOF
GFAEC	BISMOCLITE	BiOCI
GFAED	DAUBREEITE	BiO(OH,CI)
GFAEE	RORISITE	CaFCI
GFAEF	ZHANGPEISHANITE	BaFCI

SERIES F BLIXITE, mon/C2/c. Structure is based on oxocentered tetrahedra (OPb₄) that share edges to form $[O_5Pb_8]$ sheets // to (100). Hydroxyl groups form two short (OH)-Pb bonds that result in (OH)Pb₂ dimers attached to the $[O_5Pb_8]$ sheets. Chlorine atoms link the { $[O_5Pb_8](OH)_2$ } sheets in the third dimension. The structure is closely related to other structures based on PbO-type defect sheets.

GFAFA BLIXITE Pb₈O₅(OH)₂Cl₄

SERIES G NADORITE, orth/Bmmb. The structure is based on an heterogeneous packing of CI and O atoms. The square packing layers of CI and of O atoms alternate and stack in the closest way. The stacking symbol for such a kind of sequence is (Q²Q¹)f. The Pb and Sb atoms occupy 1/2 of the 8-coordinated voids of this packing. Ecdemite and heliophyllite are placed here because they are close members of the bismuth oxy-halide structure and show close structural relations to it.

GFAGA	NADORITE	PbSbO ₂ Cl	
GFAGB	PERITE	PbBiO ₂ Cl	
GFAGC	THORIKOSITE	Pb ₃ (Sb,As)O ₃ (OH)Cl ₂	tetr/I4/mmm
GFAGD	FREEDITE	Pb ₁₅ (Cu,Fe) ₃ ²⁺ As ₄ ³⁺ O ₁₉ Cl ₁₀ mon/C2	2/m
GFAGE	TELLUROPERITE	Pb ₃ TeO ₄ Cl ₂	
GFAGF	ECDEMITE	Pb ₆ As ₂ O ₇ Cl ₄ ?	
		13	

GFAGG	HELIOPHYLLITE	Pb ₆ As ₂ O ₇ Cl ₄ ?
GFAGH	open	
GFAGI	open	
GFAGJ	PINALITE	$Pb_3WO_5Cl_2$

- SERIES H ONORATOITE, tric/P<u>1</u>. The structure consists of SbO₃₊₁ trigonal pyramids, with Sb in the center, share edges to form ladder-like double chains // [010]; four of these ladders are linked by shared corners to form tubes // [010]; CI is accommodated in large cavities between the tube structures.
- GFAHA ONORATOITE Sb₈O₁₁Cl₂

SERIES I MELANOTHALLITE, orth/Fddd. Structure not known. Scacchi, A. (1870) Reale accademia delle scienze fisische e matematiche, Naples, Rend.: 9: 86. Scacchi (1884) Reale accademia delle scienze fisische e matematiche, Naples, Rend.: 10: 158. Zambonini, Ferruccio (1935) Mineralogia Vesuviana. second edition with Quercigh, 463 pp., Naples: 111-112. Palache, Charles, Harry Berman & Clifford Frondel (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume II: Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, Etc. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged: 44. American Mineralogist (1983): 68: 852. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva: 111: 562-565.
 GFAIA MELANOTHALLITE Cu₂OCl₂

SERIES J ASISITE, tetr/l4/mmm. Both minerals have sheet structures consisting of two types of layers // (001); in the one layer, PbO₄Cl₄ antiprisms share edges with PbO₄ pyramids; in the other, similar antiprisms also share faces along (001) mirror planes; the positions of Si and Mo are unknown. The new mineral janchevite was discovered in Mn-oxide ore from the Kombat mine, Grootfontein district, Otjozondjupa region, Namibia. Associated minerals are baryte, hausmannite, calcite, magnesite, and kombatite. Janchevite forms orange-red thick tabular anhedral to subhedral grains up to $0.4 \times 0.8 \times 0.10$ 0.8 mm in size. The luster is adamantine. The mineral is brittle, with Mohs' hardness of 2¹/₂. Distinct cleavage on {001} is observed. Dcalc = 8.16 g/cm3. The reflectance values [Rmax/Rmin, % (λ , nm)] are: 20.56/20.06 (470), 19.20/18.81 (546), 19.06/18.59 (589), 19.31/18.85 (650). An infrared spectrum indicates the absence of H-bearing groups and indicates V and Mo valences of 5+ and 6+, respectively. The chemical composition is (electron microprobe, wt.%): PbO 91.64, SiO2 0.45, V2O5 1.95, MoO3 2.41, Cl 4.16, -O=Cl -0.94, total 99.67. The empirical formula based on (Pb + V + Mo + Si) = 8 apfu is Pb7.20V5+0.38Mo6+0.29Si0.13Cl2.06O8.25. Janchevite is the V-dominant analogue of parkinsonite. The mineral is tetragonal and its unit-cell parameters as determined from single-crystal X-ray diffraction data are: a 3.9591(5), c 22.6897(3) Å, V 355.65(1) Å3; Z = 1. Powder X-ray diffraction data conform to the space group I4/mmm; the strongest lines of the PXRD pattern [d, Å (I/I0, %) (hkl)] are: 3.889 (24) (011), 3.501 (31) (013), 2.979 (86) (015), 2.833 (25) (008), 2.794 (100) (110), 1.992 (26) (118), 1.988 (49) (020), 1.649 (46) (215). Janchevite is named in honor of the prominent Macedonian mineralogist Prof. Dr. Simeon Janchev (b. 1942).

GFAJA	ASISITE	$Pb_7SiO_8Cl_2$
GFAJB	PARKINSONITE	(Pb,Mo,□) ₈ O ₉ Cl ₂
GFAJC	SCHWARTZEMBERGITE	$Pb^{2+}_{5}l^{3+}O_{6}H_{2}Cl_{3}$
GFAJD	JANCHEVITE	$Pb_7V^{5+}(O_{8.5}\square_{0.5})Cl_2$

SERIES K PONOMAREVITE, mon/C2/c. Four corner-sharing CuCl₄ tetrahedra form Cu₄Ocl₁₀ clusters; these are linked by K into a 3-dimsional framework

- GFAKA PONOMAREVITE K₄Cu₄OCI₁₀
- SERIES L open

- SERIES M SEELIGERITE, orth/Cmm2. Structure consists of a stacking sequence along [001] of square-net layers of O atoms and square-net layers of Cl atoms with Pb²⁺ and l⁵⁺ cations located in the voids of the packing. As is typical of cations with a stereoactive lone-pair of electrons, Pb²⁺ and l⁵⁺ adopt strongly-asymmetrical configurations. Pb cations occur in a variety of coordination polyhedra, ranging from anticubes and monocapped anticubes to pyramidal 'one-sided' coordinations. I is coordinated by a square of four oxygen atoms.
- GFAMA SEELIGERITE Pb₃IO₄Cl₃
- SERIES N LAURIONITE, orth/Pcmn. In both dimorphs, Pb^[3+3+2] bicapped trigonal prisms share trigonal faces to form columns // [010]. In paralaurionite, the prisms in the columns share square faces to form double columns; in laurionite, the prisms in the columns share CI-CI edges to form zigzag chains // [001], resulting in sheets // (100).

GFANA	LAURIONITE	Pb(OH)Cl	orth/Pcmn
GFANB	PARALAURIONITE	Pb(OH)Cl	mon/C2/m

SERIES O FIEDLERITE, mon/P21/a In both dimorphs, three types of bicapped trigonal prisms, bicapped by F + water, CI + (OH) or CI+F, share trigonal faces to form columns // [010], and edges to form chains // [001], resulting in sheets // (100).

GFAOA FIEDLERITE Pb3(OH)2Cl4 mon/P21/a

- SERIES P PENFIELDITE, hex/P6/m. Pb^[3+3+2] bicapped trigonal prisms share edges and corners to form a hexagonal framework with channels // [0001].
- GFAPA PENFIELDITE Pb₂(OH)Cl₃
- SERIES Q KOENENITE, trig/R<u>3</u>m. Structure consists of two types of sheets // (0001), regularly alternating in the [0001] direction: I. NaCI-type sheets with [111]_{NaCI} perpendicular to (0001), and II. Brucite-type sheets; both types are rotated 28.2 degrees to each other around [0001]. One double sheet (I + II) has c = 10.88A.
- GFAQA KOENENITE Na₄Mg₉Al₄(OH)₂₂Cl₁₂
- SERIES R TEDHADLEYITE, tric/A1. The crystal structure of tedhadleyite, ideally Hg2+Hg+10O4l2(CI,Br)2, triclinic, A-1, a 7.0147(5), b 11.8508(7), c 12.5985(8) Å, alpha 115.583(5), beta 82.575(2), gamma 100.619(2)°, V 927.0(2) Å3, Z = 2, was solved by direct methods and refined to an R1 index of 4.5% for 2677 unique reflections. There are six symmetrically distinct Hg sites in tedhadleyite: Hg(1) is occupied by Hg2+ and Hg(2-6) are occupied by Hg+ that forms three [Hg-Hg]2+ dimers with Hg-Hg separations between 2.527 and 2.556 Å. These [Hg-Hg]2+ dimers have strong covalent bonds to O atoms, forming pseudo-linear O-Hg-Hg-O arrangements, and weak bonds to halogen and O atoms at high angles to the dimer axis. The [O-Hg-Hg-O] groups share anions to form four-membered square rings of composition [Hg8O4] that link along [100] via [O-Hg-Hg-O] groups and along [001] via [O-Hg-O] groups, forming rectangular rings of composition [Hg14O8]. The rings form a corrugated layer that interweaves with a symmetrically related layer whereby the [O-Hg(6)-Hg(6)-O] linking groups of one layer pass through the centres of the square [Hg8O4] rings of the other layer to form [Hg11O4] complex slabs parallel to (010) that link through Hg-I and Hg-Br,CI bonds.

GFARA TEDHADLEYITE $Hg^{2+}(Hg^{1+}-Hg^{1+})_5O_4I_2(CI_{1.16}Br_{0.84})$

SERIES S SYMESITE SERIES, mon/Cm. The crystal structure of mereheadite (monoclinic, Cm, a = 17.372(1), b = 27.9419(19), c = 10.6661(6) Å, β = 93.152(5)°, V = 5169.6(5) Å3) has been solved by direct methods and refined to R1 = 0.058 for 6279 unique observed reflections. The structure consists of alternating Pb-O/OH blocks and Pb-CI sheets oriented parallel to the (201) plane and belongs to the 1:1 type of lead oxide halides with PbO blocks. It contains 30 symmetrically independent Pb positions, 28 of which belong to the PbO blocks, whilst two positions (Pb12 and Pb16) are located within the tetragonal sheets of the CI- anions. Mereheadite is thus the first naturally occurring lead oxychloride mineral with inter-layer Pb ions. The coordination configurations of the Pb atoms of the PbO blocks are distorted versions of the square antiprism. In one half of the coordination hemisphere, they are coordinated by hard O2- and OH- anions whose number varies from three to four, whereas the other

coordination hemisphere invariably consists of four soft CI- anions located at the vertices of a distorted square. The Pb12 and Pb16 atoms in between the PbO blocks have an almost planar square coordination of four CI- anions. These PbCl4 squares are complemented by triangular TO3 groups (T = B, C) so that a sevenfold coordination is achieved. The Pb-O/OH block in mereheadite can be obtained from the ideal PbO block by the following list of procedures: (1) removal of some PbO4 groups that results in the formation of square-shaped vacancies; (2) insertion of TO3 groups into these vacancies; (3) removal of some Pb atoms (that correspond to the Pb1A and Pb2A sites), thus transforming coordination of associated O sites from tetrahedral OPb4 to triangular OHPb3; and (4) replacement of two O2- anions by one OH- anion with twofold coordination; this results in formation of the 1 x 2 elongated rectangular vacancy. The structural formula that can be derived on the basis of the results of single-crystal structure determination is Pb47024(OH)13Cl25(BO3)2(CO3). Welch et al. (1998) proposed the formula Pb2O(OH)Cl for mereheadite, which assumes that neither borate nor carbonate is an essential constituent of mereheadite and their presence in the mineral is due to disordered replacements of CI- anions. However, our study demonstrates that this is not the case, as BO3 and CO3 groups have well-defined structural positions confined in the vacancies of the Pb-O/OH blocks and are therefore essential constituents. Our results also show that mereheadite is not a polymorph of blixite, but is in fact related to symesite. Symesite thus becomes the baseline member of a group of structurally-related minerals. The structure of hereroite contains 16 independent Pb sites in strongly asymmetric coordination by O and Cl atoms. There are two tetrahedral sites, from which one (As) is occupied solely by As, whereas the second (T) has a mixed occupancy of $[Si_{0.48}As_{0.29}V_{0.15}Mo_{0.09}]$. There are 21 O sites. The O1-O8 sites belong to the AsO₄ and TO4 tetrahedral oxyanions. The other O atoms are tetrahedrally coordinated by Pb atoms, thus being cental for the OPb₄ oxocentered tetrahedral. Thos tetrahedral share edges to for the $[O_{21}Pb_{32}]^2$ layers that can be described as derivatives of the [OPb] layer from the structure of tetragonal PbO. The topology of the $[O_{21}Pb_{32}]^{22+}$ layer is complex and can be described as a combination of modules extacted from the layers of OPb₄ tetrahedra present in the structures of kombatite and symesite. The structure of hereroite belonges to the 2:1 type of layered Pb oxyhalides and consists of alternating PbO-type layers and CI sheets oriented // to the (010) plane.

GFASA	MEREHEADITE	Pb ₄₇ O ₂₄ (OH) ₁₃ Cl ₂₅ (BO ₃) ₂ (CO ₃)	mon/Cm
GFASB	SYMESITE	$Pb_{10}(SO_4)O_7CI_4(H_2O)$	tri/B <u>1</u>
GFASC	VLADKRIVOVICHEVITE	[Pb ₃₂ O ₁₈][Pb ₄ Mn ₂ O]Cl ₁₄ (BO ₃))8 [·] 2H ₂ O	orth/Pmmn
GFASD	HEREROITE	$[Pb_{32}O_{20}(O,\Box)](AsO_4)_2[(Si,As,V,Mo)O_4]_2CI_{10}$	mon/C2/c
XEALA	BRITVINITE	$[Pb_7(OH)_3f(BO_3)_2(CO_3)][Mg_{4.5}(OH)_3(Si_5O_{14})$]
KCGID	LEUCOSTAURITE	Pb ₂ [B ₅ O ₉]Cl.0.5H ₂ O	
VAIAA	HYALOTEKITE	$Pb_{2}Ba_{2}Ca_{2}[B_{2}(Si_{3/2}Be_{1/2})Si_{8}O_{28}]F$	
GFASE	ERIKJONSSONITE	(Pb ₃₂ O ₂₁)[(V,Si,Mo,As)O ₄] ₄ Cl ₉	

- SERIES T MELLIZINKALITE, tric/P<u>1</u>. The structure consists of alternating layers of different ZnCl₄ polyhedra. The Zn(1) cations are located in flat squares which are connected to each other via common CI-CI edges to form Zn₂Cl₆ dimers, whereas Zn(2) cations center isolated tetrahedra. Potassium cations occupy sites between the layers of Zn-centered polyhedra.
- GFATA MELLIZINKALITE K₃Zn₂Cl₇

TYPE B HYDROUS HALIDES

- SERIES A SIMONKOLLEITE, trig/R<u>3</u>m. The structure consists of Zn octahedron sharing four edges with adjacent octahedra to form a dioctahedral sheet similar to that in muscovite and other dioctahedral phyllosilicates. In this sheet, each vacant octahedron is sandwiched between two Zn tetrahedral with their apices pointing away from the sheet. Related minerals with similar structures include cianciulliite, gordaite, namuwite, bechererite, chalcophyllite, ramsbeckite, chalcophanite and claringbullite.
- GFBAA SIMONKOLLEITE [Zn₅(OH)₈Cl₂](H₂O)
- SERIES B ARAVAIPAITE SERIES, tric/P1 or P1 (βPbF₂ structure). The structure of these minerals consists of (Pb,Ca)F₂ layers parallel to {010}, with AI-(F,OH) octahedra between layers.
- GFBBA ARAVAIPAITE P
- Pb₃Al(F,OH)₉

GFBBB CALCIOARAVAIPAITE PbCa₂Al(F,OH)₉

SERIES C NEPSKOEITE, orth/Pcmm,Pcm2₁, or Pc2m. Structures not known. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva (1998): 127(1): 41-46. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva: 111: 324-329. American Mineralogist (1983): 68: 643. Acta Crystallographica: 6: 40-44.

 GFBCA
 NEPSKOEITE
 Mg₄Cl(OH)₇ · 6H₂O

 GFBCB
 KORSHUNOVSKITE
 Mg₂Cl(OH)₃ · 4H₂O

SERIES D CALUMETITE. Structure not known. Williams, S. A. (1963): Anthonyite and calumetite, two new minerals from the Michigan copper district. American Mineralogist: 48: 614-619.

GFBDACALUMETITECaCu4(OH)8Cl2.3.5H2O, orth/GFBDBANTHONYITECu(OH,Cl)2·3H2O, mon/

SERIES E KHAIDARKANITE, mon/C2/m. Structure consists of AIF₄(H₂O)₂ distorted octahedra sharing edges to form linear chains // [010]; Al(OH)₆ octahedra and Cu(OH)₄(H₂O)₂ tetragonal dipyramids sharing edges to form a 3-membered columns also // [010]. The chains and columns are linked by H-bonding and by sharing some corners of the polyhedra.

GFBEA KHAIDARKANITE Cu₄Al₃(OH)₁₄F₃.2H₂O

SERIES F ROMANORLOVITE, tetr/l4/mmm. Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Britvin, S.N., Vigasina, M.F., Lykova, I.S., Sidorov, E.G. and Pushcharovsky, D.Y. (2014) Romanorlovite, IMA 2014-011. CNMNC Newsletter No. 20, June 2014, page 557; *Mineralogical Magazine*, **78**, 549-558.

GFBFA ROMANORLOVITE K₈Cu₆Cl₁₇(OH)₃

- SERIES G KALITHALLITE, tetr/l4/mmm.
- GFBGA KALITHALLITE K₃TICl₆.2H₂O

Updated 05/20/19